Abstract

An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function. It is shown how to take advantage of the form of the limited memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.

MSC codes

  1. 65
  2. 49

Keywords

  1. bound constrained optimization
  2. limited memory method
  3. nonlinear optimization
  4. quasi-Newton method
  5. large-scale optimization

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. V. Aho, J. E. Hopcroff, J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974
2.
B. M. Averick, J. J. Moré, User Guide for the MINPMCK-2 Test Problem Collection, Report, ANLIMCS-TM-157, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, 1991
3.
Dimitri P. Bertsekas, Projected Newton methods for optimization problems with simple constraints, SIAM J. Control Optim., 20 (1982), 221–246
4.
I. Bongartz, A. R. Conn, N. I. M. Gould, PH. L. Toint, CUTE: Constrained and Unconstrained Testing Environment, Research Report, IBM T.J. Watson Research Center, Yorktown, NY, 1993
5.
James V. Burke, Jorge J. Moré, On the identification of active constraints, SIAM J. Numer. Anal., 25 (1988), 1197–1211
6.
Richard H. Byrd, Jorge Nocedal, Robert B. Schnabel, Representations of quasi-Newton matrices and their use in limited memory methods, Math. Programming, 63 (1994), 129–156
7.
Paul H. Calamai, Jorge J. Moré, Projected gradient methods for linearly constrained problems, Math. Programming, 39 (1987), 93–116
8.
Andrew R. Conn, Nicholas I. M. Gould, Ph. L. Toint, Testing a class of methods for solving minimization problems with simple bounds on the variables, Math. Comp., 50 (1988), 399–430
9.
A. R. Conn, N. I. M. Gould, Ph. L. Toint, Global convergence of a class of trust region algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988), 433–460
10.
A. R. Conn, N. I. M. Gould, Ph. L. Toint, LANCELOT: A FORTRAN package for Large-Scale Nonlinear Optimization, Release A, Springer Series in Computational Mathematics, Vol. 17, Springer-Verlag, Berlin, 1992xx+330
11.
A. R. Conn, J. Moré, 1993, Private communication
12.
John E. Dennis, Jr., Robert B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall Series in Computational Mathematics, Prentice Hall Inc., Englewood Cliffs, NJ, 1983xiii+378
13.
Harwell Subroutine Library, Release 10, Oxfordshire, UK, 1990
14.
Jean Charles Gilbert, Claude Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms, Math. Programming, 45 (1989), 407–435
15.
Philip E. Gill, Walter Murray, Margaret H. Wright, Practical optimization, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1981xvi+401
16.
A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70 (1964), 709–710
17.
E. S. Levitin, B. T. Polyak, Constrained minimization problems, USSR Comput. Math. Math. Phys., 6 (1966), 1–50
18.
Dong C. Liu, Jorge Nocedal, On the limited memory BFGS method for large scale optimization, Math. Programming, 45 (1989), 503–528
19.
J. J. Moré, D. J. Thuente, On Line Search Algorithms with Guaranteed Sufficient Decrease, 1990, Mathematics and Computer Science Division Preprint MCS-P153-0590, Argonne National Laboratory, Argonne, IL
20.
Jorge J. Moré, Gerardo Toraldo, Algorithms for bound constrained quadratic programming problems, Numer. Math., 55 (1989), 377–400
21.
Jorge Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980), 773–782
22.
J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970xx+572
23.
C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, LBFGS-B : Fortran Subroutines for Large-Scale Bound Constrained Optimization, Report, NAM-11, EELS Department, Northwestern University, 1994

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 1190 - 1208
ISSN (online): 1095-7197

History

Submitted: 29 November 1993
Accepted: 3 August 1994
Published online: 13 July 2006

MSC codes

  1. 65
  2. 49

Keywords

  1. bound constrained optimization
  2. limited memory method
  3. nonlinear optimization
  4. quasi-Newton method
  5. large-scale optimization

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By