Free access
Proceedings
Proceedings of the 2017 SIAM International Conference on Data Mining

Hash-Based Feature Learning for Incomplete Continuous-Valued Data

Abstract

Hash-based feature learning is a widely-used data mining approach for dimensionality reduction and for building linear models that are comparable in performance to their nonlinear counterpart. Unfortunately, such an approach is inapplicable to many real-world data sets because they are often riddled with missing values. Substantial data preprocessing is therefore needed to impute the missing values before the hash-based features can be derived. Biases can be introduced during this preprocessing because it is performed independently of the subsequent modeling task, which can result in the models constructed from the imputed hash-based features being suboptimal. To overcome this limitation, we present a novel framework called H-FLIP that simultaneously estimates the missing values while constructing a set of nonlinear hash-based features from the incomplete data. The effectiveness of the framework is demonstrated through experiments using both synthetic and real-world data sets.

Formats available

You can view the full content in the following formats:

Information & Authors

Information

Published In

cover image Proceedings
Proceedings of the 2017 SIAM International Conference on Data Mining
Pages: 678 - 686
Editors: Nitesh Chawla, University of Notre Dame, Notre Dame, Indiana, USA and Wei Wang, University of California, Los Angeles, California, USA
ISBN (Online): 978-1-61197-497-3

History

Published online: 9 June 2017

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media