Free access
Proceedings
Proceedings of the 2017 SIAM International Conference on Data Mining

Error Metrics for Learning Reliable Manifolds from Streaming Data

Abstract

Spectral dimensionality reduction is frequently used to identify low-dimensional structure in high-dimensional data. However, learning manifolds, especially from the streaming data, is computationally and memory expensive. In this paper, we argue that a stable manifold can be learned using only a fraction of the stream, and the remaining stream can be mapped to the manifold in a significantly less costly manner. Identifying the transition point at which the manifold is stable is the key step. We present error metrics that allow us to identify the transition point for a given stream by quantitatively assessing the quality of a manifold learned using Isomap. We further propose an efficient mapping algorithm, called S-Isomap, that can be used to map new samples onto the stable manifold. We describe experiments on a variety of data sets that show that the proposed approach is computationally efficient without sacrificing accuracy.

Formats available

You can view the full content in the following formats:

Information & Authors

Information

Published In

cover image Proceedings
Proceedings of the 2017 SIAM International Conference on Data Mining
Pages: 750 - 758
Editors: Nitesh Chawla, University of Notre Dame, Notre Dame, Indiana, USA and Wei Wang, University of California, Los Angeles, California, USA
ISBN (Online): 978-1-61197-497-3

History

Published online: 9 June 2017

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media