Proceedings
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms

# The Two-Sided Game of Googol and Sample-Based Prophet Inequalities

## Abstract

The secretary problem or the game of Googol are classic models for online selection problems that have received significant attention in the last five decades. In this paper we consider a variant of the problem and explore its connections to data-driven online selection. Specifically, we are given n cards with arbitrary nonnegative numbers written on both sides. The cards are randomly placed on n consecutive positions on a table, and for each card, the visible side is also selected at random. The player sees the visible side of all cards and wants to select the card with the maximum hidden value. To this end, the player flips the first card, sees its hidden value and decides whether to pick it or drop it and continue with the next card.
We study algorithms for two natural objectives. In the first one, similar to the secretary problem, the player wants to maximize the probability of selecting the maximum hidden value. We show that this can be done with probability at least 0.45292. In the second objective, similar to the prophet inequality, the player wants to maximize the expectation of the selected hidden value. Here we show a guarantee of at least 0.63518 with respect to the expected maximum hidden value.
Our algorithms result from combining three basic strategies. One is to stop whenever we see a value larger than the initial n visible numbers. The second one is to stop the first time the last flipped card's value is the largest of the currently n visible numbers in the table. And the third one is similar to the latter but to stop it additionally requires that the last flipped value is larger than the value on the other side of its card.
We apply our results to the prophet secretary problem with unknown distributions, but with access to a single sample from each distribution. In particular, our guarantee improves upon 1 – 1/e for this problem, which is the currently best known guarantee and only works for the i.i.d. prophet inequality with samples.

View all available purchase options and get full access to this chapter.

## Information & Authors

### Information

#### Published In

Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
Pages: 2066 - 2081
Editor: Shuchi Chawla
ISBN (Online): 978-1-611975-99-4

#### History

Published online: 23 December 2019

## Metrics & Citations

### Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

#### Cited By

There are no citations for this item

## Share

### Share

#### Share on social media

• Request permissions
The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.