Coarse-grid correction is a key ingredient of scalable domain decomposition methods. In this work we construct coarse-grid space using the low-frequency modes of the subdomain Dirichlet-to-Neumann maps and apply the obtained two-level preconditioners to the extended or the original linear system arising from an overlapping domain decomposition. Our method is suitable for parallel implementation, and its efficiency is demonstrated by numerical examples on problems with large heterogeneities for both manual and automatic partitionings.

MSC codes

  1. 65N55
  2. 65F10
  3. 65N30


  1. domain decomposition
  2. coarse grid
  3. deflation
  4. heterogeneous coefficients

Get full access to this article

View all available purchase options and get full access to this article.


J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring, I, Math. Comput., 47 (1986), pp. 103–134.
X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792–797.
A. St-Cyr, M. J. Gander, and S. J. Thomas, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning, SIAM J. Sci. Comput., 29 (2007), pp. 2402–2425.
C. R. Dohrmann and O. B. Widlund, An overlapping Schwarz algorithm for almost incompressible elasticity, SIAM J. Numer. Anal., 47 (2009), pp. 2897–2923.
C. R. Dohrmann and O. B. Widlund, Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity, Internat. J. Numer. Methods Engrg., 82 (2010), pp. 157–183.
M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math., 72 (1996), pp. 313–348.
E. Efstathiou and M. Gander, Why restricted additive Schwarz converges faster than additive Schwarz, BIT, 43 (2003), pp 945–959.
Y. A. Erlangga and R. Nabben, Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 684–699.
Y. A. Erlangga and R. Nabben, Algebraic multilevel Krylov methods, SIAM J. Sci. Comput., 31 (2009), pp. 3417–3437.
J. F. Escobar, The geometry of the first non-zero Stekloff eigenvalue, J. Funct. Anal., 150 (1997), pp. 544–556.
G. Karypis and V. Kumar, METIS—Unstructured Graph Partitioning and Sparse Matrix Ordering System; see http://glaros.dtc.umn.edu/gkhome/views/metis.
B. Kozintsev and B. Kedem, Clipped Gaussian random fields, field generating software, 1999, available online at http://www-users.math.umd.edu/~bnk/bak/generate.cgi.
F. Magoulès, F.-X. Roux, and L. Series, Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 3742–3759.
J. Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg., 9 (1993), pp. 233–241.
J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients, Math. Comp., 65 (1996), pp. 1387–1401.
F. Nataf, F. Rogier, and E. de Sturler, Optimal Interface Conditions for Domain Decomposition Methods, Internal Report 301, CMAP (Ecole Polytechnique), Palaiseau, France, 1994; available online at http://www.ann.jussieu.fr/~nataf/cvfiniMod.pdf.
R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal., 24 (1987), pp. 355–365.
A. Padiy, O. Axelsson, and B. Polman, Generalized augmented matrix preconditioning approach and its application to iterative solution of ill-conditioned algebraic systems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 793–818.
C. Pechstein and R. Scheichl, Scaling up through domain decomposition, Appl. Anal., 88 (2009), pp. 1589–1608.
C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs, Numer. Math., 111 (2008), pp. 293–333.
O. Pironneau, F. Hecht, A. Le Hyaric, and J. Morice, FreeFem++, Laboratoire J.-L. Lions; available online at http://www.freefem.org/ff++/.
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
B. E. Smith and P. E. Bjøstad, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, UK, 1996.
J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga, Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods, J. Sci. Comput., 39 (2009), pp. 340–370.
J. M. Tang, S. P. MacLachlan, R. Nabben, and C. Vuik, A comparison of two-level preconditioners based on multigrid and deflation, SIAM. J. Matrix Anal. Appl., 31 (2010), pp. 1715–1739.
A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer, New York, 2005.
C. Vuik, A. Segal, and J. A. Meijerink, An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients, J. Comput. Phys., 152 (1999), pp. 385–403.
C. Vuik, A. Segal, J. A. Meijerink, and G. T. Wijma, The construction of projection vectors for a deflated ICCG method applied to problems with extreme contrasts in the coefficients, J. Comput. Phys., 172 (2001), pp. 426–450.

Information & Authors


Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: 1623 - 1642
ISSN (online): 1095-7197


Submitted: 25 May 2010
Accepted: 26 April 2011
Published online: 21 July 2011

MSC codes

  1. 65N55
  2. 65F10
  3. 65N30


  1. domain decomposition
  2. coarse grid
  3. deflation
  4. heterogeneous coefficients



Metrics & Citations



If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By







Copy the content Link

Share with email

Email a colleague

Share on social media