Abstract

This article explores the subpixel accuracy attainable for the disparity computed from a rectified stereo pair of images with small baseline. In this framework we consider translations as the local deformation model between patches in the images. A mathematical study first shows how discrete block-matching can be performed with arbitrary precision under Shannon–Whittaker conditions. This study leads to the specification of a block-matching algorithm which is able to refine disparities with subpixel accuracy. Moreover, a formula for the variance of the disparity error caused by the noise is introduced and proved. Several simulated and real experiments show a decent agreement between this theoretical error variance and the observed root mean squared error in stereo pairs with good signal-to-noise ratio and low baseline. A practical consequence is that under realistic sampling and noise conditions in optical imaging, the disparity map in stereo-rectified images can be computed for the majority of pixels (but only for those pixels with meaningful matches) with a $1/20$ pixel precision.

MSC codes

  1. 68U10
  2. 65G99
  3. 94A20

Keywords

  1. block-matching
  2. subpixel accuracy
  3. noise error estimate

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Balci and H. Foroosh, Subpixel estimation of shifts directly in the Fourier domain, IEEE Trans. Image Process., 15 (2006), pp. 1965–1972.
2.
A. Banno and K. Ikeuchi, Disparity map refinement and 3D surface smoothing via directed anisotropic diffusion, in Proceedings of the 12th IEEE International Conference on Computer Vision Workshops, 2009, pp. 1870–1877.
3.
S. Birchfield and C. Tomasi, A pixel dissimilarity measure that is insensitive to image sampling, IEEE Trans. Pattern Anal. Mach. Intell., 20 (1998), pp. 401–406.
4.
G. Blanchet, A. Buades, B. Coll, J.-M. Morel, and B. Rougé, Fattening Free Correlation Algorithms, preprint, 2010; available online from http://hal.archives-ouvertes.fr/hal-00466406/en/.
5.
Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 1124–1137.
6.
M. Z. Brown, D. Burschka, and G. D. Hager, Advances in computational stereo, IEEE Trans. Pattern Anal. Mach. Intell., 25 (2003), pp. 993–1008.
7.
T. Buades, Y. Lou, J.-M. Morel, and Z. Tang, A note on multi-image denoising, in Proceedings of the International Workshop on Local and Non-Local Approximation in Image Processing, 2009, pp. 1–15.
8.
A. Chambolle, Total variation minimization and a class of binary MRF models, in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Comput. Sci. 3757, A. Rangarajan, B. Vemuri, and A. L. Yuille, eds., Springer-Verlag, Berlin, Heidelberg, 2005, pp. 136–152.
9.
L. Chen and K.-H. Yap, An effective technique for subpixel image registration under noisy conditions, IEEE Trans. Syst. Man Cybernet. A, Syst. Humans, 38 (2008), pp. 881–887.
10.
W. Chen, M. Zhang, and Z. Xiong, Segmentation-based stereo matching with occlusion handling via region border constraints, Comput. Vis. Image Underst., submitted.
11.
J. Darbon and M. Sigelle, A fast and exact algorithm for total variation minimization, in Pattern Recognition and Image Analysis, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 351–359.
12.
J. Delon and B. Rougé, Small baseline stereovision, J. Math. Imaging Vis., 28 (2007), pp. 209–223.
13.
G. Facciolo, Variational Adhesion Correction with Image Based Regularization for Digital Elevation Models, Master's thesis, Universidad de la República, Montevideo, Uruguay, 2005.
14.
G. Facciolo, F. Lecumberry, A. Almansa, A. Pardo, V. Caselles, and B. Rougé, Constrained anisotropic diffusion and some applications, in Proceedings of the British Machine Vision Conference (BMVC 2006), Edinburgh, 2006.
15.
S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, and A. Schmitt, Real-time stereo by using dynamic programming, in Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, Vol. 3, IEEE Computer Society, Washington, DC, 2004, pp. 29–36.
16.
S. Gehrig and U. Franke, Improving stereo sub-pixel accuracy for long range stereo, in Proceedings of the 11th IEEE International Conference on Computer Vision, 2007, pp. 1–7.
17.
A. Giros, B. Rougé, and H. Vadon, Appariement fin d'images stéréoscopiques et instrument dédié avec un faible coefficient stéréoscopique, French Patent N.0403143, 2004.
18.
M. Gong, R. Yang, L. Wang, and M. Gong, A performance study on different cost aggregation approaches used in real-time stereo matching, Int. J. Comput. Vision, 75 (2007), pp. 283–296.
19.
H. Hirschmuller, Stereo vision in structured environments by consistent semi-global matching, in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2006, pp. 2386–2393.
20.
H. Ishikawa, Exact optimization for Markov random fields with convex priors, IEEE Trans. Pattern Anal. Mach. Intell., 25 (2003), pp. 1333–1336.
21.
T. Kanade and M. Okutomi, A stereo matching algorithm with an adaptive window: Theory and experiment, IEEE Trans. Pattern Anal. Mach. Intell., 16 (1994), pp. 920–932.
22.
S. B. Kang, R. Szeliski, and J. Chai, Handling occlusions in dense multi-view stereo, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2001, pp. 103–110.
23.
M. Kasser and Y. Egels, Digital Photogrammetry, Taylor & Francis, London, 2002.
24.
A. Klaus, M. Sormann, and K. Karner, Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure, in Proceedings of the 18th International Conference on Pattern Recognition (ICPR), IEEE Computer Society, Washington, DC, 2006, pp. 15–18.
25.
V. Kolmogorov and R. Zabih, Graph cut algorithms for binocular stereo with occlusions, in Handbook of Mathematical Models in Computer Vision, Springer-Verlag, New York, 2006, pp. 423–437.
26.
J. Kybic, Bootstrap resampling for image registration uncertainty estimation without ground truth, IEEE Trans. Image Process., 19 (2010), pp. 64–73.
27.
H.J. Landau and H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals, Bell System Tech. J., 41 (1962), pp. 1295–1336.
28.
D. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, 60 (2004), pp. 91–110.
29.
B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, in Proceedings of the Seventh International Joint Conference on Artificial Intelligence(IJCAI'81), Morgan Kaufmann, San Francisco, 1981, pp. 674–679.
30.
L. Moisan, Simulation of High-Precision Stereo Pairs Using Geometric Integration, Technical report, CNES, Toulouse, France, 2010.
31.
P. Musé, F. Sur, F. Cao, J.-L. Lisani, and J.-M. Morel, A Theory of Shape Identification, Lecture Notes in Math. 1948, Springer-Verlag, Berlin, Heidelberg, 2008.
32.
D. Nehab, S. Rusinkiewicz, and J. Davis, Improved sub-pixel stereo correspondences through symmetric refinement, in Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05), Vol. 1, IEEE Computer Society, Washington, DC, 2005, pp. 557–563.
33.
Y. Ohta and T. Kanade, Stereo by intra- and inter-scanline search using dynamic programming, IEEE Trans. Pattern Anal. Mach. Intell., 7 (1985), pp. 139–154.
34.
M. Okutomi and T. Kanade, A multiple-baseline stereo, IEEE Trans. Pattern Anal. Mach. Intell., 15 (1993), pp. 353–363.
35.
E. Z. Psarakis and G. D. Evangelidis, An enhanced correlation-based method for stereo correspondence with sub-pixel accuracy, in Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05), Vol. 1, IEEE Computer Society, Washington, DC, 2005, pp. 907–912.
36.
J. Ren, J. Jiang, and T. Vlachos, High-accuracy sub-pixel motion estimation from noisy images in Fourier domain, IEEE Trans. Image Process., 19 (2010), pp. 1379–1384.
37.
D. Robinson and P. Milanfar, Fundamental performance limits in image registration, IEEE Trans. Image Process., 13 (2004), pp. 1185–1199.
38.
D. Robinson and P. Milanfar, Bias minimizing filter design for gradient-based image registration, Signal Process. Image Commun., 20 (2005), pp. 554–568.
39.
G. K. Rohde, A. Aldroubi, and D. M. Healy, Interpolation artifacts in sub-pixel image registration, IEEE Trans. Image Process., 18 (2009), pp. 333–345.
40.
N. Sabater, L. Moisan, G. Blanchet, A. Almansa, and J.-M. Morel, Review of low-baseline stereo algorithms and benchmarks, in Image and Signal Processing for Remote Sensing XVI, Proceedings of SPIE, Vol. 7830, 2010, 783005.
41.
N. Sabater, J.-M. Morel, and A. Almansa, Rejecting Wrong Matches in Stereovision, CMLA Preprint, 2008-28, ENS Cachan, Cachan, France, 2008.
42.
N. Sabater, J.-M. Morel, A. Almansa, and G. Blanchet, Discarding moving objects in quasi-simultaneous stereovision, in Proceedings of the 17th IEEE International Conference on Image Processing (ICIP), 2010, pp. 2957–2960.
43.
D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Int. J. Comput. Vision, 47 (2002), pp. 7–42.
44.
C. Schmid and A. Zisserman, The geometry and matching of lines and curves over multiple views, Int. J. Comput. Vision, 40 (2000), pp. 199–234.
45.
M. Shimizu and M. Okutomi, Precise sub-pixel estimation on area-based matching, in Proceedings of the Eighth IEEE International Conference on Computer Vision, Vol. 1, 2001, pp. 90–97.
46.
R. Szeliski and D. Scharstein, Sampling the disparity space image, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 419–425.
47.
Q. Tian and M. N. Huhns, Algorithms for subpixel registration, Comput. Vision Graph. Image Process., 35 (1986), pp. 220–233.
48.
O. Veksler, Fast variable window for stereo correspondence using integral images, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 1, 2003, pp. 556–561.
49.
Z.-F. Wang and Z.-G. Zheng, A region based stereo matching algorithm using cooperative optimization, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
50.
M. Xu, H. Chen, and P. K. Varshney, Ziv–Zakai bounds on image registration, IEEE Trans. Signal Process., 57 (2009), pp. 1745–1755.
51.
Q. Yang, R. Yang, J. Davis, and D. Nister, Spatial-depth super resolution for range images, in Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '07), 2007, pp. 1–8.
52.
I. S. Yetik and A. Nehorai, Performance bounds on image registration, IEEE Trans. Signal Process., 54 (2006), pp. 1737–1749.
53.
S. Yoon and K.-J. Kweon, Adaptive support-weight approach for correspondence search, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), pp. 650–656.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 472 - 500
ISSN (online): 1936-4954

History

Submitted: 7 June 2010
Accepted: 10 January 2011
Published online: 31 March 2011

MSC codes

  1. 68U10
  2. 65G99
  3. 94A20

Keywords

  1. block-matching
  2. subpixel accuracy
  3. noise error estimate

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media