Abstract

We present a logspace algorithm for computing a canonical labeling, in fact, a canonical interval representation, for interval graphs. To achieve this, we compute canonical interval representations of interval hypergraphs. This approach also yields a canonical labeling of convex graphs. As a consequence, the isomorphism and automorphism problems for these graph classes are solvable in logspace. For proper interval graphs we also design logspace algorithms computing their canonical representations by proper and by unit interval systems.

MSC codes

  1. 05C60
  2. 05C85

Keywords

  1. graph isomorphism
  2. graph canonization
  3. logspace
  4. interval graphs
  5. interval hypergraphs
  6. convex graphs
  7. proper interval graphs
  8. unit interval graphs

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Annexstein and R. Swaminathan, On testing consecutive-ones property in parallel, Discrete Appl. Math., 88 (1998), pp. 7–28.
2.
L. Babel, I. N. Ponomarenko, and G. Tinhofer, The isomorphism problem for directed path graphs and for rooted directed path graphs, J. Algorithms, 21 (1996), pp. 542–564.
3.
J. Bang-Jensen, J. Huang, and L. Ibarra, Recognizing and representing proper interval graphs in parallel using merging and sorting, Discrete Appl. Math., 155 (2007), pp. 442–456.
4.
K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.
5.
A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM Monogr. Discrete Math. Appl. 3, SIAM, Philadelphia, 1999.
6.
J. Cai, M. Fürer, and N. Immerman An optimal lower bound on the number of variables for graph identification, Combinatorica, 12 (1992), pp. 389–410.
7.
L. Chen, Graph isomorphism and identification matrices: Parallel algorithms, IEEE Trans. Parallel Distrib. Syst., 7 (1996), pp. 308–319.
8.
L. Chen, Graph isomorphism and identification matrices: Sequential algorithms, J. Comput. System Sci., 59 (1999), pp. 450–475.
9.
D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague, Simple linear time recognition of unit interval graphs, Inform. Process. Lett., 55 (1995), pp. 99–104.
10.
L. Chen and Y. Yesha, Parallel recognition of the consecutive-ones property with applications, J. Algorithms, 12 (1991), pp. 375–392.
11.
L. Chen and Y. Yesha, Efficient parallel algorithms for bipartite permutation graphs, Networks, 23 (1993), pp. 29–39.
12.
X. Deng, P. Hell, and J. Huang, Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs, SIAM J. Comput., 25 (1996), pp. 390–403.
13.
S. Datta, P. Nimbhorkar, T. Thierauf, and F. Wagner, Graph isomorphism for $K_{3,3}$-free and $K_5$-free graphs is in log-space, in FSTTCS, Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2009, pp. 145–156.
14.
S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner, Planar graph isomorphism is in log-space, in CCC, IEEE Computer Society, Washington, DC, 2009, pp. 203–214.
15.
P. Duchet, Propriété de helly et problèmes de représentation, in Problèmes Combinatoires et Théorie des Graphes (Orsay, 1976), Colloq. Int. CNRS 260, CNRS, Paris, France, 1978, pp. 117–118.
16.
P. Duchet, Classical perfect graphs, Ann. Discrete Math., 21 (1984), pp. 67–96.
17.
K. Etessami, Counting quantifiers, successor relations, and logarithmic space, J. Comput. System Sci., 54 (1997), pp. 400–411.
18.
S. Evdokimov, I. N. Ponomarenko, and G. Tinhofer Forestal algebras and algebraic forests (on a new class of weakly compact graphs), Discrete Math., 225 (2000), pp. 149–172.
19.
D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math., 15 (1965), pp. 835–855.
20.
M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Ann. Discrete Math. 57, Elsevier, New York, 2004.
21.
M. Grohe and O. Verbitsky, Testing graph isomorphism in parallel by playing a game, in ICALP, Springer, Berlin, 2006, pp. 3–14.
22.
M. Habib, R. M. McConnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement, Theoret. Comput. Sci., 234 (2000), pp. 59–84.
23.
F. Harary and T. A. McKee, The square of a chordal graph, Discrete Math., 128 (1994), pp. 165–172.
24.
W.-L. Hsu and R. M. McConnell, PC trees and circular-ones arrangements, Theoret. Comput. Sci., 296 (2003), pp. 99–116
25.
P. Hell, R. Shamir, and R. Sharan, A fully dynamic algorithm for recognizing and representing proper interval graphs, SIAM J. Comput., 31 (2001), pp. 289–305.
26.
C. M. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Comput. Sci. 136, Springer, Berlin, 1982.
27.
W.-L. Hsu, $O(M\cdotN)$ algorithms for the recognition and isomorphism problems on circular-arc graphs, SIAM J. Comput., 24 (1995), pp. 411–439.
28.
W.-L. Hsu and T.-H. Ma, Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs, SIAM J. Comput., 28 (1999), pp. 1004–1020.
29.
P. N. Klein, Efficient parallel algorithms for chordal graphs, SIAM J. Comput., 25 (1996), pp. 797–827.
30.
J. Köbler and S. Kuhnert, The isomorphism problem for k-trees is complete for logspace, in MFCS, Springer, Berlin, 2009, pp. 537–548.
31.
P. N. Klein and J. H. Reif, An efficient parallel algorithm for planarity, J. Comput. System Sci., 37 (1988), pp. 190–246.
32.
J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism Problem: Its Structural Complexity, Progr. Theoret. Comput. Sci., Birkhäuser Boston, Boston, 1993.
33.
D. Kozen, U. V. Vazirani, and V. V. Vazirani, NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching, in FSTTCS, Lecture Notes in Comput. Sci. 206, Springer, Berlin, 1985, pp. 496–503.
34.
J. Kratochvíl, A special planar satisfiability problem and a consequence of its NP–completeness, Discrete Appl. Math., 52 (1994), pp. 233–252.
35.
J. Kratochvíl, Intersection graphs of noncrossing arc–connected sets in the plane, in GD, Springer, Berlin, 1996, pp. 257–270.
36.
B. Laubner, Capturing polynomial time on interval graphs, in LICS, IEEE Computer Society, Washington, DC, 2010, pp. 199–208.
37.
S. Lindell, A logspace algorithm for tree canonization, in STOC, ACM, New York, 1992, pp. 400–404.
38.
G. S. Lueker and K. S. Booth, A linear time algorithm for deciding interval graph isomorphism, J. ACM, 26 (1979), pp. 183–195.
39.
R. M. McConnell, Linear-time recognition of circular-arc graphs, Algorithmica, 37 (2003), pp. 93–147.
40.
J. H. Reif, Symmetric complementation, J. ACM, 31 (1984), pp. 401–421.
41.
O. Reingold, Undirected connectivity in log-space, J. ACM, 55 (2008), pp. 17.1–17.24.
42.
F. S. Roberts, Indifference graphs, in Proof Techniques in Graph Theory: Proceedings of the 2nd Annual Arbor Graph Theory Conference, Academic Press, New York, 1969, pp. 139–146.
43.
D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5 (1976), pp. 266–283.
44.
J. P. Spinrad, Efficient Graph Representations, Fields Inst. Monogr. 19, AMS, Providence, RI, 2003.
45.
A. Tucker, A structure theorem for the consecutive 1's property, J. Combin. Theory Ser. B, 12 (1972), pp. 153–162.
46.
R. Uehara, Simple geometrical intersection graphs, in WALCOM, Lecture Notes in Comput. Sci. 4921, Springer, Berlin, 2008, pp. 25–33.
47.
C.-W. Yu and G.-H. Chen, An efficient parallel recognition algorithm for bipartite-permutation graphs, IEEE Trans. Parallel Distrib. Syst., 7 (1996), pp. 3–10.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 1292 - 1315
ISSN (online): 1095-7111

History

Submitted: 29 July 2010
Accepted: 29 June 2011
Published online: 20 September 2011

MSC codes

  1. 05C60
  2. 05C85

Keywords

  1. graph isomorphism
  2. graph canonization
  3. logspace
  4. interval graphs
  5. interval hypergraphs
  6. convex graphs
  7. proper interval graphs
  8. unit interval graphs

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media