Abstract

This paper introduces a new sweeping preconditioner for the iterative solution of the variable coefficient Helmholtz equation in two and three dimensions. The algorithms follow the general structure of constructing an approximate LDLt factorization by eliminating the unknowns layer by layer starting from an absorbing layer or boundary condition. The central idea of this paper is to approximate the Schur complement matrices of the factorization using moving perfectly matched layers (PMLs) introduced in the interior of the domain. Applying each Schur complement matrix is equivalent to solving a quasi-1D problem with a banded LU factorization in the 2D case and to solving a quasi-2D problem with a multifrontal method in the 3D case. The resulting preconditioner has linear application cost, and the preconditioned iterative solver converges in a number of iterations that is essentially independent of the number of unknowns or the frequency. Numerical results are presented in both two and three dimensions to demonstrate the efficiency of this new preconditioner.

MSC codes

  1. 65F08
  2. 65N22
  3. 65N80

Keywords

  1. Helmholtz equation
  2. perfectly matched layers
  3. high frequency waves
  4. preconditioners
  5. LDLt factorization
  6. Green’s function
  7. multifrontal methods
  8. optimal ordering

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41.
2.
A. Atle and B. Engquist, On surface radiation conditions for high-frequency wave scattering, J. Comput. Appl. Math., 204 (2007), pp. 306–316.
3.
A. Bayliss, C. I. Goldstein and E. Turkel, An iterative method for the Helmholtz equation, J. Comput. Phys., 49 (1983), pp. 443–457.
4.
J.-D. Benamou and B. Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys., 136 (1997), pp. 68–82.
5.
J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185–200.
6.
A. Brandt and I. Livshits, Wave-ray multigrid method for standing wave equations, Electron. Trans. Numer. Anal., 6 (1997), pp. 162–181.
7.
W. C. Chew and W. H. Weedon, A 3-d perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microw. Opt. Technol. Lett., 7 (1994), pp. 599–604.
8.
B. Després, Domain decomposition method and the Helmholtz problem, in Mathematical and Numerical Aspects of Wave Propagation Phenomena (Strasbourg, 1991), SIAM, Philadelphia, 1991, pp. 44–52.
9.
J. Duff and J. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.
10.
H. C. Elman, O. G. Ernst and D. P. O’Leary, A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations, SIAM J. Sci. Comput., 23 (2001), pp. 1291–1315.
11.
B. Engquist and L. Ying, Fast directional multilevel algorithms for oscillatory kernels, SIAM J. Sci. Comput., 29 (2007), pp. 1710–1737.
12.
B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation, Communications in Pure and Applied Mathematics, 64 (2011), pp. 697–795.
13.
Y. A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation, Arch. Comput. Methods Eng., 15 (2008), pp. 37–66.
14.
Y. A. Erlangga, C. W. Oosterlee and C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492.
15.
J. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp. 345–363.
16.
W. Hackbusch, A sparse matrix arithmetic based on -matrices. Part I: Introduction to -matrices, Computing, 62 (1999), pp. 89–108.
17.
S. Johnson, Notes on Perfectly Matched Layers, Technical report, Massachusetts Institute of Technology, Cambridge, MA, 2010.
18.
G. A. Kriegsmann, A. Taflove and K. R. Umashankar, A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach, IEEE Trans. Antennas and Propagation, 35 (1987), pp. 153–161.
19.
A. Laird and M. Giles, Preconditioned Iterative Solution of the 2D Helmholtz Equation, Technical report, NA 02-12, Computing Lab, Oxford University, Oxford, UK, 2002.
20.
L. Lin, C. Yang, J. Lu, L. Ying and W. E, A fast parallel algorithm for selected inversion of structured sparse matrices with application to 2D electronic structure calculations, SIAM J. Sci. Comput., 33 (2010) pp. 1329–1351.
21.
L. Lin, C. Yang, J. Meza, J. Lu, L. Ying and W. E, Selinv—An algorithm for selected inversion of a sparse symmetric matrix, ACM Trans. Math. Software, 37 (2011).
22.
J. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Rev., 34 (1992), pp. 82–109.
23.
D. Osei-Kuffuor and Y. Saad, Preconditioning Helmholtz linear systems. Appl. Numer. Math., 60 (2010).
24.
V. Rokhlin, Diagonal forms of translation operators for the Helmholtz equation in three dimensions, Appl. Comput. Harmon. Anal., 1 (1993), pp. 82–93.
25.
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003.
26.
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
27.
A. Toselli, Some Results on Overlapping Schwarz Methods for the Helmholtz Equation Employing Perfectly Matched Layers. Technical report, Department of Computer Science, New York University, New York, NY, 1998.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 686 - 710
ISSN (online): 1540-3467

History

Submitted: 6 August 2010
Accepted: 7 April 2011
Published online: 28 June 2011

MSC codes

  1. 65F08
  2. 65N22
  3. 65N80

Keywords

  1. Helmholtz equation
  2. perfectly matched layers
  3. high frequency waves
  4. preconditioners
  5. LDLt factorization
  6. Green’s function
  7. multifrontal methods
  8. optimal ordering

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.