Abstract

We present a new necessary and sufficient condition for essential uniqueness of the decomposition of a third-order tensor in rank-$(L_r,L_r,1)$ terms. We derive a new deterministic technique for blind signal separation that relies on this decomposition. The method assumes that the signals can be modeled as linear combinations of exponentials or, more generally, as exponential polynomials. The results are illustrated by means of numerical experiments.

MSC codes

  1. 15A18
  2. 15A69

Keywords

  1. multilinear algebra
  2. higher-order tensor
  3. singular value decomposition
  4. canonical polyadic decomposition
  5. block term decomposition
  6. blind signal separation
  7. exponential polynomial

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition, Psychometrika, 9 (1970), pp. 267–283.
2.
A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley & Sons, New York, 2009.
3.
P. Comon and B. Mourrain, Decomposition of quantics in sums of powers of linear forms, Signal Process., 53 (1996), pp. 93–108.
4.
P. Comon and C. Jutten, eds., Handbook of Blind Source Separation, Independent Component Analysis and Applications, Academic Press, Oxford, UK, 2010.
5.
L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.
6.
L. De Lathauwer, Decompositions of a higher-order tensor in block terms—Part I: Lemmas for partitioned matrices, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1022–1032.
7.
L. De Lathauwer, Decompositions of a higher-order tensor in block terms—Part II: Definitions and uniqueness, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1033–1066.
8.
L. De Lathauwer and D. Nion, Decompositions of a higher-order tensor in block terms—Part III: Alternating least squares algorithms, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1067–1083.
9.
L. De Lathauwer, A short introduction to tensor-based methods for factor analysis and blind source separation, in Proceedings of the 7th International Symposium on Image and Signal Processing and Analysis (ISPA 2011), Dubrovnik, Croatia, 2011, pp. 558–563.
10.
S. Feldmann and G. Heinig, Vandermonde factorization and canonical representations of block Hankel matrices, Linear Algebra Appl., 241/243 (1996), pp. 247–278.
11.
R.A. Harshman, Foundations of the PARAFAC procedure: Model and conditions for an “explanatory” multi-mode factor analysis, UCLA Working Papers in Phonetics, 16 (1970), pp. 1–84.
12.
F.L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6 (1927), pp. 164–189.
13.
F.L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or tensor, J. Math. Phys., 7 (1927), pp. 39–79.
14.
A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, New York, 2001.
15.
T. Jiang and N.D. Sidiropoulos, Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints, IEEE Trans. Signal Process., 52 (2004), pp. 2625–2636.
16.
I. Joliffe, Principal Component Analysis, John Wiley & Sons, New York, 2005.
17.
T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
18.
D. Kalman, The generalized Vandermonde matrix, Math. Mag., 57 (1984), pp. 15–21.
19.
T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455–500.
20.
P.M. Kroonenberg, Applied Multiway Data Analysis, John Wiley & Sons, Hoboken, NJ, 2008.
21.
S.Y. Kung, K.S. Arun, and D.V. Bhaskar Rao, State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem, J. Optim. Soc. Amer., 73 (1983), pp. 1799–1811.
22.
D. Nion and L. De Lathauwer, An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA, Signal Process., 88 (2008), pp. 749–755.
23.
D. Nion and L. De Lathauwer, Block component model based blind DS-CDMA receivers, IEEE Trans. Signal Process., 56 (2008), pp. 5567–5579.
24.
A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 2010.
25.
M. Rajih, P. Comon, and R.A. Harshman, Enhanced line search: A novel method to accelerate PARAFAC, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1128–1147.
26.
N. Sidiropoulos and G.Z. Dimić, Blind multiuser detection in W-CDMA systems with large delay spread, IEEE Signal Proc. Letters, 8 (2001), pp. 87–89.
27.
A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical Sciences, John Wiley & Sons, Chichester, UK, 2004.
28.
M. Sørensen, L. De Lathauwer, and L. Deneire, PARAFAC with orthogonality in one mode and applications in DS-CDMA systems, in Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2010), Dallas, TX, 2010, pp. 4142–4145.
29.
M. Sørensen, L. De Lathauwer, P. Comon, S. Icart, and L. Deneire, Computation of a Canonical Polyadic Decomposition with a Semi-Unitary Matrix Factor, Technical Report 11-95, ESAT-SISTA, K.U. Leuven, Leuven, Belgium, 2010.
30.
L.R. Tucker, The extension of factor analysis to three-dimensional matrices, in Contributions to Mathematical Psychology, H. Gulliksen and N. Frederiksen, eds., Holt, Rinehart & Winston, New York, 1964, pp. 109-127.
31.
L.R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), pp. 279-311.
32.
E.E. Tyrtyshnikov, How bad are Hankel matrices?, Numer. Math., 67 (1994), pp. 261–269.
33.
D. Vandevoorde, A Fast Exponential Decomposition Algorithm and Its Applications to Structured Matrices, Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY, 1998.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 1451 - 1474
ISSN (online): 1095-7162

History

Submitted: 16 August 2010
Accepted: 13 September 2011
Published online: 8 December 2011

MSC codes

  1. 15A18
  2. 15A69

Keywords

  1. multilinear algebra
  2. higher-order tensor
  3. singular value decomposition
  4. canonical polyadic decomposition
  5. block term decomposition
  6. blind signal separation
  7. exponential polynomial

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media