Abstract

This paper considers the extreme type-II Ginzburg–Landau equations that model vortex patterns in superconductors. The nonlinear PDEs are solved using Newton's method, and properties of the Jacobian operator are highlighted. Specifically, this paper illustrates how the operator can be regularized using an appropriate phase condition. For a two-dimensional square sample, the numerical results are based on a finite-difference discretization with link variables that preserves the gauge invariance. For two exemplary sample sizes, a thorough bifurcation analysis is performed using the strength of the applied magnetic field as a bifurcation parameter and focusing on the symmetries of this system. The analysis gives new insight into the transitions between stable and unstable states, as well as the connections between stable solution branches.

MSC codes

  1. 82D55
  2. 35Q56
  3. 81R40
  4. 65F22

Keywords

  1. superconductors
  2. Ginzburg–Landau system
  3. symmetry-breaking bifurcations
  4. vortices
  5. regularization

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP, 5 (1957), pp. 1174–1182.
2.
A. Aftalion and S. J. Chapman, Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg–Landau equations of superconductivity, SIAM J. Appl. Math., 60 (2000), pp. 1157–1176.
3.
A. Aftalion and Q. Du, The bifurcation diagrams for the Ginzburg-Landau system of superconductivity, Phys. D, 163 (2002), pp. 94–105.
4.
A. Aftalion and W. C. Troy, On the solutions of the one-dimensional Ginzburg-Landau equations for superconductivity, Phys. D, 132 (1999), pp. 214–232.
5.
A. Y. Aladyshkin, A. V. Silhanek, W. Gillijns, and V. V. Moshchalkov, Nucleation of superconductivity and vortex matter in superconductor–ferromagnet hybrids, Supercond. Sci. Technol., 22 (2009), 053001.
6.
I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), pp. 99–143.
7.
J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45 (1978), pp. 847–883.
8.
C. Bacuta, J. H. Bramble, and J. Xu, Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains, J. Numer. Math., 11 (2003), pp. 75–94.
9.
B. J. Baelus and F. M. Peeters, Dependence of the vortex configuration on the geometry of mesoscopic flat samples, Phys. Rev. B, 65 (2002), 104515.
10.
F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser Boston, Boston, 1994.
11.
W.-J. Beyn and V. Thümmler, Freezing solutions of equivariant evolution equations, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 85–116.
12.
W.-J. Beyn and V. Thümmler, Phase conditions, symmetries and PDE continuation, in Numerical Continuation Methods for Dynamical Systems, Springer, Dordrecht, The Netherlands, 2007, pp. 301–330.
13.
L. R. E. Cabral, B. J. Baelus, and F. M. Peeters, From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks, Phys. Rev. B, 70 (2004), 144523.
14.
A. R. Champneys and B. Sandstede, Numerical computation of coherent structures, in Numerical Continuation Methods for Dynamical Systems, Springer, Dordrecht, The Netherlands, 2007, pp. 331–358.
15.
L. F. Chibotaru, A. Ceulemans, V. Bruyndoncx, and V. V. Moshchalkov, Symmetry-induced formation of antivortices in mesoscopic superconductors, Nature, 42 (2000), pp. 555–598.
16.
L. F. Chibotaru, A. Ceulemans, M. Morelle, G. Teniers, C. Carballeira, and V. V. Moshchalkov, Ginzburg–Landau description of confinement and quantization effects in mesoscopic superconductors, J. Math. Phys., 46 (2005), 095108.
17.
E. N. Dancer and S. P. Hastings, On the global bifurcation diagram for the one-dimensional Ginzburg–Landau model of superconductivity, European J. Appl. Math., 11 (2000), pp. 271–291.
18.
J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
19.
Q. Du, Discrete gauge invariant approximations of a time dependent Ginzburg–Landau model of superconductivity, Math. Comp., 67 (1998), pp. 965–986.
20.
Q. Du, M. D. Gunzburger, and J. S. Peterson, Analysis and approximation of the Ginzburg–Landau model of superconductivity, SIAM Rev., 34 (1992), pp. 54–81.
21.
Q. Du and L. Ju, Numerical simulations of the quantized vortices on a thin superconducting hollow sphere, J. Comput. Phys., 201 (2004), pp. 511–530.
22.
M. Golubitsky and I. Stewart, The Symmetry Perspective, Birkhäuser Verlag, Basel, 2002.
23.
M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Springer-Verlag, New York, 1988.
24.
B. B. Goodman, Type II superconductors, Rep. Prog. Phys., 29 (1966), pp. 445–487.
25.
M. A. Heroux and J. M. Willenbring, Trilinos Users Guide, Technical Report SAND2003-2952, Sandia National Laboratories, Albuquerque, NM, 2003.
26.
R. Hoyle, Pattern Formation. An Introduction to Methods, Cambridge University Press, Cambridge, UK, 2006.
27.
H. G. Kaper and M. K. Kwong, Vortex configurations in type-II superconducting films, J. Comput. Phys., 119 (1995), pp. 120–131.
28.
H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of Bifurcation Theory: Proceedings of an Advanced Seminar, University of Wisconsin–Madison, 1976, P. H. Rabinowitz, ed., Academic Press, New York, 1977, pp. 359–384.
29.
C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers Appl. Math. 16, SIAM, Philadelphia, 1995.
30.
B. Krauskopf, H. M. Osinga, and J. Galán-Vioque, eds., Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Canopus, Bristol, UK, Springer-Verlag, Dordrecht, The Netherlands, 2007.
31.
F.-H. Lin and Q. Du, Ginzburg–Landau vortices: Dynamics, pinning, and hysteresis, SIAM J. Math. Anal., 28 (1997), pp. 1265–1293.
32.
C. W. Rowley, I. G. Kevrekidis, J. E. Marsden, and K. Lust, Reduction and reconstruction for self-similar dynamical systems, Nonlinearity, 16 (2003), pp. 1257–1275.
33.
E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Birkhäuser Boston, Boston, 2007.
34.
V. A. Schweigert, F. M. Peeters, and P. Singha Deo, Vortex phase diagram for mesoscopic superconducting disks, Phys. Rev. Lett., 81 (1998), pp. 2783–2786.
35.
D. G. Schweitzer and M. Garber, Hysteresis in superconductors. II. Experimental tests for critical states, Phys. Rev., 160 (1967), pp. 348–358.
36.
P. Singha Deo, V. A. Schweigert, F. M. Peeters, and A. K. Geim, Magnetization of mesoscopic superconducting disks, Phys. Rev. Lett., 79 (1997), pp. 4653–4656.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 447 - 477
ISSN (online): 1536-0040

History

Submitted: 31 August 2010
Accepted: 2 January 2012
Published online: 22 March 2012

MSC codes

  1. 82D55
  2. 35Q56
  3. 81R40
  4. 65F22

Keywords

  1. superconductors
  2. Ginzburg–Landau system
  3. symmetry-breaking bifurcations
  4. vortices
  5. regularization

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.