A Priori Error Analysis of the Petrov–Galerkin Crank–Nicolson Scheme for Parabolic Optimal Control Problems

Abstract

In this paper, a finite element discretization of an optimal control problem governed by the heat equation is considered. The temporal discretization is based on a Petrov–Galerkin variant of the Crank–Nicolson scheme, whereas the spatial discretization employs usual conforming finite elements. With a suitable postprocessing step, a discrete solution is obtained for which error estimates of optimal order are proven. A numerical result is presented for illustrating the theoretical findings.

MSC codes

  1. 49J20
  2. 35K20
  3. 49M05
  4. 49M25
  5. 49M29
  6. 65M12
  7. 65M60

Keywords

  1. optimal control
  2. heat equation
  3. control constraints
  4. finite elements
  5. Crank–Nicolson scheme
  6. error estimates

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
T. Apel and T. Flaig, Crank-Nicolson Schemes for Optimal Control Problems with Evolution Equations, Preprint SPP1253–113, DFG priority program 1253 “Optimization with PDEs,” Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2010.
2.
A. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation, Math. Comp., 52 (1989), pp. 255–274.
3.
R. Becker, D. Meidner, and B. Vexler, Efficient numerical solution of parabolic optimization problems by finite element methods, Optim. Methods Softw., 22 (2007), pp. 813–833.
4.
R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math., 106 (2007), pp. 349–367.
5.
M. Bergounioux, K. Ito, and K. Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim., 37 (1999), pp. 1176–1194.
6.
E. Burman, Crank-Nicolson finite element methods using symmetric stabilization with an application to optimal control problems subject to transient advection-diffusion equations, Commun. Math. Sci., 9 (2011), pp. 319–329.
7.
K. Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's, M2AN Math. Model. Numer. Anal., 44 (2010), pp. 189–206.
8.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40, SIAM, Philadelphia, 2002.
9.
R. Dautray and J.-L. Lions, Evolution Problems I, Math. Anal. Numer. Methods Sci. Technol. 5, Springer-Verlag, Berlin, 1992.
10.
K. Deckelnick and M. Hinze, Variational discretization of parabolic control problems in the presence of pointwise state constraints, J. Comput. Math., 29 (2011), pp. 1–16.
11.
K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equations, Cambridge University Press, Cambridge, UK, 1996.
12.
L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, AMS, Providence, RI, 2002.
13.
Gascoigne, High Performance Finite Element Toolkit, http://www.gascoigne.uni-hd.de (2002).
14.
K. Kunisch and A. Rösch, Primal-dual active set strategy for a general class of constrained optimal control problems, SIAM J. Optim., 13 (2002), pp. 321–334.
15.
I. Lasiecka and K. Malanowski, On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems, Control Cybernet., 7 (1978), pp. 21–36.
16.
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss. 170, Springer, Berlin, 1971.
17.
M. Luskin and R. Rannacher, On the smoothing property of the Galerkin method for parabolic equations, SIAM J. Numer. Anal., 19 (1982), pp. 93–113.
18.
K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems, Appl. Math. Optim., 8 (1981), pp. 69–95.
19.
R. S. McNight and W. E. Bosarge Jr., The Ritz–Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 11 (1973), pp. 510–524.
20.
D. Meidner, R. Rannacher, and B. Vexler, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time, SIAM J. Control Optim., 49 (2011), pp. 1961–1997.
21.
D. Meidner and B. Vexler, Adaptive space-time finite element methods for parabolic optimization problems, SIAM J. Control Optim., 46 (2007), pp. 116–142.
22.
D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints, SIAM J. Control Optim., 47 (2008), pp. 1150–1177.
23.
D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: Problems with control constraints, SIAM J. Control Optim., 47 (2008), pp. 1301–1329.
24.
C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43 (2004), pp. 970–985.
25.
I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numer. Math., to appear; published online September 15, 2011 (
26.
R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math., 43 (1984), pp. 309–327.
27.
RoDoBo, A C$++$ Library for Optimization with Stationary and Nonstationary PDEs with interface to Gascoigne, http://www.rodobo.uni-hd.de (2010).
28.
A. Rösch, Error estimates for parabolic optimal control problems with control constraints, Z. Anal. Anwendungen, 23 (2004), pp. 353–376.
29.
A. Rösch and B. Vexler, Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing, SIAM J. Numer. Anal., 44 (2006), pp. 1903–1920.
30.
F. Schieweck, A-stable discontinuous Galerkin-Petrov time discretization of higher order, J. Numer. Math., 18 (2010), p. 25–57.
31.
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Ser. Comput. Math. 25, Springer, Berlin, 2006.
32.
R. Winther, Error estimates for a Galerkin approximation of a parabolic control problem, Ann. Mat. Pura Appl. (4), 117 (1978), pp. 173–206.
33.
J. Wloka, Partielle Differentialgleichungen: Sobolevräume und Randwertaufgaben, B. G. Teubner, Stuttgart, 1982.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 2183 - 2211
ISSN (online): 1095-7138

History

Submitted: 23 September 2010
Accepted: 2 August 2011
Published online: 27 October 2011

MSC codes

  1. 49J20
  2. 35K20
  3. 49M05
  4. 49M25
  5. 49M29
  6. 65M12
  7. 65M60

Keywords

  1. optimal control
  2. heat equation
  3. control constraints
  4. finite elements
  5. Crank–Nicolson scheme
  6. error estimates

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media