First page of PDF

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. V. Gnedenko, The Theory of Probability, Chelsea, New York, 1962
2.
A. S. Frolov, N. N. Chentsov, Use of dependent tests in the Monte Carlo method for obtaining smooth curves, Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist. (Vilnius, 1960) (Russian), Gosudarstv. Izdat. Politi cesk. i Naučn. Lit. Litovsk. SSR, Vilnius, 1962, 425–437
3.
J. H. Halton, A general formulation of the Monte Carlo method and “strong laws” for certain sequential schemes, MRC Tech. Summary Rep., 690, Mathematics Research Center, University of Wisconsin, Madison, 1966
4.
John H. Halton, A retrospective and prospective survey of the Monte Carlo method, SIAM Rev., 12 (1970), 1–63
5.
J. H. Halton, Masters Thesis, Studies in the theory of the Monte Carlo method, Doctoral thesis, Oxford University, 1960
6.
J. H. Halton, Sequential Monte Carlo, Proc. Cambridge Philos. Soc., 58 (1962), 57–78, revised in [78]
7.
William J. Pervin, Foundations of general topology, Academic Press Textbooks in Mathematics, Academic Press, New York, 1964xi+209
8.
W. Sierpinski, General Topology, University of Toronto Press, Toronto, Ontario, 1956
9.
J. H. Halton, On the generation of random sequences in Fréchet spaces, Rep., AMD 374/BNL 8996, Brookhaven National Laboratory, Upton, N.Y., 1965, reprinted in [4]
10.
J. F. Koksma, A general theorem from the theory of uniform distribution modulo 1, Mathematica, Zutphen. B., 11 (1942), 7–11, (In Dutch.)
11.
J. P. Bertrandias, Calculation of an integral by means of the sequence $X_{n}=An$. Evaluation of the error, Publ. Inst. Statist. Univ. Paris, 9 (1960), 335–357
12.
C. B. Haselgrove, A method for numerical integration, Math. Comp., 15 (1961), 323–337
13.
E. Hlawka, Functions of bounded variation in the theory of uniform distribution, Ann. Mat. Pura Appl., IV, 54 (1961), 325–334, (In German.)
14.
E. Hlawka, On the approximate computation of multiple integrals, Monatsh. Math., 66 (1962), 140–151
15.
S. K. Zaremba, Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura Appl. [4], 73 (1966), 293–317
16.
J. M. Hammersley, K. W. Morton, Discussion, R. S. S. symposium on Monte Carlo methods, J. Roy. Statist. Soc. Ser. B, 16 (1954), 61–75, reprinted in [4]
17.
J. M. Hammersley, D. C. Handscomb, Monte Carlo methods, Methuen & Co. Ltd., London, 1965vii+178
18.
John H. Curtiss, Sampling methods applied to differential and difference equations, Proceedings, Seminar on Scientific Computation, November, 1949, International Business Machines Corp., New York, N. Y., 1950, 87–109, reprinted in [4]
19.
Lord Rayleigh, On James Bernoulli's theorem in probabilities, Philos. Mag., 47 (1899), 246–251
20.
“Student”, Probable error of a correlation coefficient, Biometrika, 6 (1908), 302–310
21.
R. Courant, K. O. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics, Math. Ann., 100 (1928), 32–74, English transl., Courant Institute of Mathematical Sciences, New York University, 1956
22.
A. N. Kolmogorov, On the analytic method in probability theory, Math. Ann., 104 (1931), 415–458
23.
G. Pólya, On a random walk in a network of streets, Colloque consacré à la théorie des probabilités. I: Conférences d'introduction, Actualités scientifiques et industrielles, no. 734, Hermann, Paris, 1938, 25–44
24.
Nicholas Metropolis, S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc., 44 (1949), 335–341, reprinted in [4]
25.
S. Ulam, On the Monte Carlo method, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, 207–212, reprinted in [4]
26.
G. W. King, The Monte Carlo method as a natural mode of expression in operations research, J. Operations Res. Soc. Amer., 1 (1953), 46–51, reprinted in [4]
27.
J. M. Hammersley, K. W. Morton, Poor man's Monte Carlo, J. Roy. Statist. Soc. Ser. B., 16 (1954), 23–38; discussion 61–75, reprinted in [4]
28.
K. D. Tocher, The application of automatic computers to sampling experiments, J. Roy. Statist. Soc. Ser. B., 16 (1954), 39–61; discussion 61–75, reprinted in [4]
29.
W. F. Bauer, The Monte Carlo method, J. Soc. Indust. Appl. Math., 6 (1958), 438–451, reprinted in [4]
30.
J. M. Hammersley, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci., 86 (1960), 844–874 (1960), reprinted in [4]
31.
H. Kahn, Applications of Monte Carlo, Rep., RM 1237-AEC, RAND Corp., Santa Monica, California, 1956
32.
H. A. Meyer, Symposium on Monte Carlo Methods, John Wiley, New York, 1956
33.
Yu. A. Shreider, Method of statistical testing. Monte Carlo method, Translated by Scripta Technica Inc, Elsevier Publishing Co., Amsterdam-London-New York, 1964ix+303
34.
R. Kraft, C. J. Wensrich, Monte Carlo methods—A bibliography covering the period 1947 to June 1961, Rep., UCRL 6581, Lawrence Radiation Laboratory, University of California, Berkeley, 1961
35.
John H. Halton, On the relative merits of correlated and importance sampling for Monte Carlo integration, Proc. Cambridge Philos. Soc., 61 (1965), 497–498, reprinted in [4]
36.
John H. Halton, An interpretation of negative probabilities, Proc. Cambridge Philos. Soc., 62 (1966), 83–86, reprinted in [4]
37.
M. S. Bartlett, Negative probability, Proc. Cambridge Philos. Soc., 41 (1945), 71–73
38.
J. M. Hammersley, K. W. Morton, A new Monte Carlo technique: antithetic variates, Proc. Cambridge Philos. Soc., 52 (1956), 449–475, reprinted in [4]
39.
J. M. Hammersley, J. G. Mauldon, General principles of antithetic variates, Proc. Cambridge Philos. Soc., 52 (1956), 476–481, reprinted in [4]
40.
D. C. Handscomb, Proof of the antithetic variate theorem for $n>2$, Proc. Cambridge Philos. Soc., 54 (1958), 300–301, reprinted in [4]
41.
K. W. Morton, A generalisation of the antithetic variate technique for evaluating integrals, J. Math. Phys., 36 (1957), 289–293, reprinted in [4]
42.
J. H. Halton, D. C. Handscomb, A method for increasing the efficiency of Monte Carlo integration, J. Assoc. Comput. Mach., 4 (1957), 329–340, reprinted in [4]
43.
D. C. Handscomb, A rigorous lower bound for the efficiency of a Monte Carlo technique, Proc. Cambridge Philos. Soc., 60 (1964), 357–358, reprinted in [4]
44.
P. J. Laurent, Remark on the evaluation of integrals by the Monte Carlo method, C. R. Acad. Sci. Paris, 253 (1961), 610–612
45.
S. M. Ermakov, V. G. Zolotukhin, Polynomial approximations and the Monte Carlo method, Teor. Verojatnost. i Primenen., 5 (1960), 473–476, (English summary.)
46.
D. C. Handscomb, Remarks on a Monte Carlo integration method, Numer. Math., 6 (1964), 261–268, reprinted in [4]
47.
Hale F. Trotter, John W. Tukey, H. A. Meyer, Conditional Monte Carlo for normal samples, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 64–79
48.
Harvey J. Arnold, Bradley D. Bucher, Hale F. Trotter, John W. Tukey, H. A. Meyer, Monte Carlo techniques in a complex problem about normal samples, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 80–88
49.
J. M. Hammersley, Conditional Monte Carlo, J. Assoc. Comput. Mach., 3 (1956), 73–76, reprinted in [4]
50.
J. G. Wendel, Groups and conditional Monte Carlo, Ann. Math. Statist, 28 (1957), 1048–1052, reprinted in [4]
51.
Yu. A. Shreider, The Monte Carlo method. The method of statistical trials, Edited by Ju. A. Srei˘der. Translated from the Russian by G. J. Tee. Translation edited by D. M. Parkyn. International Series of Monographs in Pure and Applied Mathematics, Vol. 87, Pergamon Press, Oxford, 1966xii+381 pp. (loose errata)
52.
M. J. D. Powell, J. Swann, Weighted uniform sampling—a Monte Carlo technique for reducing variance, J. Inst. Math. Appl., 2 (1966), 228–236
53.
S. K. Zaremba, The mathematical basis of Monte Carlo and quasi-Monte Carlo methods., SIAM Rev., 10 (1968), 303–314, reprinted in [4]
54.
R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965xiii+781
55.
L. V. Kantorovich, G. P. Akilov, Functional analysis in normed spaces, Translated from the Russian by D. E. Brown. Edited by A. P. Robertson. International Series of Monographs in Pure and Applied Mathematics, Vol. 46, The Macmillan Co., New York, 1964xiii+771
56.
Kôsaku Yosida, Functional analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press Inc., New York, 1965xi+458
57.
Marvin Marcus, Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon Inc., Boston, Mass., 1964xvi+180
58.
L. Mirsky, An introduction to linear algebra, Oxford, at the Clarendon Press, 1955xi+433
59.
P. M. Anselone, L. B. Rall, Convergence and error bounds for approximate solutions of integral and operator equationsError in Digital Computation, Vol. 2 (Proc. Sympos. Math. Res. Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1965), Wiley, New York, 1965, 231–252
60.
K. E. Atkinson, Extensions of the Nyström method for the numerical solution of linear integral equations of the second kind, MRC Tech. Summary Rep., 686, Mathematics Research Center, University of Wisconsin, Madison, 1966
61.
J. H. Halton, Least-squares Monte Carlo methods for solving linear systems of equations, Rep., AMD 388/BNL 9678, Brookhaven National Laboratory, Upton, New York, 1965
62.
George E. Forsythe, Cleve B. Moler, Computer solution of linear algebraic systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1967xi+148
63.
Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964xi+257
64.
Richard S. Varga, Matrix iterative analysis, Prentice-Hall Inc., Englewood Cliffs, N.J., 1962xiii+322
65.
J. H. Wilkinson, Rounding errors in algebraic processes, Prentice-Hall Inc., Englewood Cliffs, N.J., 1963vi+161, and H.M. Stationery Office, London, 1963
66.
J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965xviii+662
67.
George E. Forsythe, Richard A. Leibler, Matrix inversion by a Monte Carlo method, Math. Tables and Other Aids to Computation, 4 (1950), 127–129, 5 (1951), p. 55; reprinted in [4]
68.
Wolfgang Wasow, Random walks and the eigenvalues of elliptic difference equations, J. Research Nat. Bur. Standards., 46 (1951), 65–73, reprinted in [4]
69.
W. R. Wasow, A note on the inversion of matrices by random walks, Math. Tables and Other Aids to Computation, 6 (1952), 78–81, reprinted in [4]
70.
H. P. Edmundson, Monte Carlo matrix inversion and recurrent events, Math. Tables and Other Aids to Computation, 7 (1953), 18–21, reprinted in [4]
71.
J. H. Curtiss, “Monte Carlo” methods for the iteration of linear operators, J. Math. Physics, 32 (1954), 209–232, reprinted in [4]
72.
R. E. Cutkosky, A Monte Carlo method for solving a class of integral equations, J. Research Nat. Bur. Standards, 47 (1951), 113–115, reprinted in [4]
73.
E. S. Page, The Monte Carlo solution of some integral equations, Proc. Cambridge Philos. Soc., 50 (1954), 414–425, reprinted in [4]
74.
Ascher Opler, Monte Carlo matrix calculation with punched card machines, Math. Tables and Other Aids to Computation, 5 (1951), 115–120
75.
Andrew W. Marshall, H. A. Meyer, The use of multistage sampling schemes in Monte Carlo computations, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 123–140
76.
A. Wald, Sequential Analysis, John Wiley, New York, 1950
77.
J. H. Halton, On the strong convergence of linear averages, MRC Tech. Summary Rep., 719, Mathematics Research Center, University of Wisconsin, Madison, 1966
78.
J. H. Halton, Sequential Monte Carlo (revised), MRC Tech. Summary Rep., 816, Mathematics Research Center, University of Wisconsin, Madison, 1967, reprinted in [4]
79.
M. D. Donsker, M. Kac, A sampling method for determining the lowest eigenvalue and the principal eigenfunction of Schrödinger's equation, J. Research Nat. Bur. Standards, 44 (1950), 551–557, reprinted in [4]
80.
M. Kac, M. Cohen, A statistical method for determining the lowest eigenvalue of Schrödinger's equation, Rep., 1553, National Bureau of Standards, Washington, D.C., 1952
81.
Wolfgang Wasow, On the mean duration of random walks, J. Research Nat. Bur. Standards, 46 (1951), 462–471
82.
Wolfgang Wasow, On the duration of random walks, Ann. Math. Statistics, 22 (1951), 199–216
83.
W. R. Wasow, Probabilistic methods for the numerical solution of some problems in analysis and algebra, Univ. Ruma 1st. Naz. Alta Mat. Rend. Mat. e Appl., 11 (1953), 336–346
84.
Mervin E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist., 27 (1956), 569–589
85.
Mervin E. Muller, On discrete operators connected with the Dirichlet problem, J. Math. Phys., 35 (1956), 89–113
86.
R. Fortet, On the estimation of an eigenvalue by an additive functional of a stochastic process, with special reference to the Kac-Donsker method, J. Research Nat. Bur. Standards, 48 (1952), 68–75, reprinted in [4]
87.
N. R. Steenberg, the absorption of high energy radiation, a Monte Carlostudy. I: Rectangular geometry. II: Spherical geometry. III: Density and transparency distributions, Canad. J. phys., 41 (1963), 632–650, 651–663, 2206–2240, reprinted in [4]
88A.
N. Metropolis, R. Bivins, M. Storm, Anthony Turkevich, J. M. Miller, G. Friedlander, Monte Carlo calculations on intranuclear cascades. I. Low-energy studies, Phys. Rev. (2), 110 (1958), 185–203, reprinted in [4]
88B.
N. Metropolis, R. Bivins, M. Storm, J. M. Miller, G. Friedlander, Anthony Turkevich, Monte Carlo calculations on intranuclear cascades. II. High-energy studies and pion processes, Phys. Rev. (2), 110 (1958), 204–219, reprinted in [4]
89A.
Charles W. King, Stochastic methods in quantum mechanics, Proceedings, Seminar on Scientific Computation, November, 1949, International Business Machines Corp., New York, N. Y., 1950, 42–48, reprinted in [4]
89B.
Gilbert W. King, Further remarks on stochastic methods in quantum mechanics, Proceedings, Computation Seminar, December 1949, International Business Machines Corp., New York, N. Y., 1951, 92–94, reprinted in [4]
90.
M. H. Kalos, Monte Carlo calculations of the ground state of three- and four-body nuclei, Phys. Rev. (2), 128 (1962), 1791–1795, reprinted in [4]
91.
M. H. Kalos, Stochastic wave-function for atomic helium, J. Comp. Phys., 1 (1966), 257–275, reprinted in [4]
92.
G. W. King, Stochastic methods in statistical mechanicsMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No.12, U.S. Government Printing Office, Washington, D.C., 1951, 12–18, reprinted in [4]
93.
N. Metropolis, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092, reprinted in [4]
94.
J. B. Ehrman, L. D. Fosdick, D. C. Handscomb, Computation of order parameters in an Ising lattice by the Monte Carlo method, J. Mathematical Phys., 1 (1960), 547–558, reprinted in [4]
95.
D. C. Handscomb, The Monte Carlo method in quantum statistical mechanics, Proc. Cambridge Philos. Soc., 58 (1962), 594–598, reprinted in [4]
96.
D. C. Handscomb, A Monte Carlo method applied to the Heisenberg ferromagnet, Proc. Cambridge Philos. Soc., 60 (1964), 115–122, reprinted in [4]
97.
J. R. Beeler, Jr., J. A. Delaney, Order-disorder events produced by single vacancy migration, Phys. Rev., 130 (1963), 962–971, reprinted in [4]
98.
Lloyd D. Fosdick, Numerical estimation of the partition function in quantum statistics., J. Mathematical Phys., 3 (1962), 1251–1264, reprinted in [4]
99A.
M. J. Berger, J. Doggett, Reflection and transmission of gamma radiation by barrieris. I: Monte Carlo calculation by a collision-density method, J. Res. Nat. Bur. Standards, 55 (1955), 343–350, reprinted in [4]
99B.
M. J. Berger, J. Doggett, Reflection and transmission of gamma radiation by barrieris. III. Semianalytic Monte Carlo calculation, J. Res. Nat. Bur. Standards, 56 (1956), 89–98, reprinted in [4]
100.
H. Kahn, Random sampling (Monte Carlo) techniques in neutron attenuation problems, Nucleonics, 6 (1950), 27–33, no. 6, pp. 60–65; reprinted in [4]
101.
A. S. Householder, Neutron age calculations in water, graphite, and tissueMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No. 12, U. S. Government Printing Office, Washington, D.C., 1951, 6–8, reprinted in [4]
102.
W. C. De Marcus, L. Nelson, Methods of probabilities in chains applied to particle transmission through matterMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No. 12, U.S. Government Printing Office, Washington, D.C., 1951, 9–11, reprinted in [4]
103.
K. W. Morton, Scaling neutron tracks in Monte Carlo shielding calculations, J. Nuclear Energy, 5 (1957), 320–324, reprinted in [4]
104.
M. H. Kalos, Importance sampling in Monte Carlo shielding calculations. I. Neutron penetration through thick hydrogen slabs, Nuclear Sci. Engrg., 16 (1963), 227–234, reprinted in [4]
105.
J. Spanier, A unified approach to Monte Carlo methods and an application to a multigroup calculation of absorption rates, SIAM Rev., 4 (1962), 115–134, reprinted in [4]
106.
F. T. Wall, Self-avoiding walks as a model of coiling polymer molecules, J. Chem Phys., Statistical computation of mean dimensions of macromolecules, 22 (1954), pp. 1036–1041, 23 (1955), pp. 913–921, 2314–2321, 26 (1957), pp. 1742–1749; Improved statistical method for computing mean dimensions of polymer molecules, 27 (1957), pp. 186–188; New method for the statistical computation of polymer dimensions, 30 (1959), pp. 634–637; Statistical computation of radii of gyration and mean internal dimensions of polymer molecules, 30 (1959), pp. 637–640; Monte Carlo procedures for generation of non-intersecting chains, 37 (1962), pp. 1461–1465; Monte Carlo study of coiling-type molecules. I: Macromolecular configurations. II: Statistical thermodynamics, 38 (1963), pp. 2220–2227, 2228–2232, 39 (1963), pp. 1900; reprinted in [4]
107.
J. G. Hoffman, N. Metropolis, V. Gardiner, Study of tumor cell populations by Monte Carlo methods, Science, 122 (1955), 465–466, Digital computer studies of cell multiplication by Monte Carlo methods, J. Nat. Cancer Inst., 17 (1956), pp. 175–188; reprinted in [4]
108.
P. H. Leslie, J. C. Gower, The properties of a stochastic model for two competing species, Biometrika, 45 (1958), 316–330, 46 (1959), p. 279; reprinted in [4]
109.
E. S. Page, On Monte Carlo methods in congestion problems. I: Searching for an optimum in discrete situations, Operations Res., 13 (1965), 291–299, reprinted in [4]
110.
A. Blumstein, A Monte Carlo analysis of the Ground Controlled Approach system, Operations Res., 5 (1957), 397–408, reprinted in [4]
111.
Jillian Beardwood, J. H. Halton, J. M. Hammersley, The shortest path through many points, Proc. Cambridge Philos. Soc., 55 (1959), 299–327, reprinted in [4]
112.
J. H. Halton, A. D. Spaulding, Error rates in differentially coherent phase systems in non-Gaussian noise, IEEE Trans. Comm. Tech., COM-14 (1966), 594–601, reprinted in [4]
113.
H. W. Bertini, Monte Carlo calculations on intranuclear cascades, Reps., ORNL 3360, 3383, 3433, Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1963
114.
M. N. Rosenbluth, A. W. Rosenbluth, Further results on Monte Carlo equations of state, J. Chem. Phys., 22 (1954), 881–884
115.
W. W. Wood, Monte Carlo equation of state of molecules interacting with the Lennard-Jones and hard sphere potentials, J. Chem. Phys., 27 (1957), 720–733, 1207–1208, Nuovo Cimento Suppl. Ser. 10, 9 (1958), pp. 133–143
116.
W. W. Wood, J. D. Jacobson, Monte Carlo calculations in statistical mechanics, Proc. Western Joint Computer Conference, 1959, 261–269
117.
Z. W. Salsburg, J. D. Jacobson, W. Fickett, W. W. Wood, Application of the Monte Carlo method to the lattice gas model. I: Two-dimensional triangular lattice, J. Chem. Phys., 30 (1959), 65–72
118A.
B. J. Alder, T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys., 31 (1959), 459–466
118B.
B. J. Alder, T. E. Wainwright, Studies in molecular dynamics. II. Behavior of a small number of elastic spheres, J. Chem. Phys., 33 (1960), 1439–1451
118C.
B. J. Alder, Studies in molecular dynamics. III. A mixture of hard spheres, J. Chem. Phys., 40 (1964), 2724–2730
119.
Z. W. Salsburg, W. W. Wood, Equation of state of classical hard spheres at high density, J. Chem. Phys., 37 (1962), 798–804
120.
D. A. Chesnut, Z. W. Salsburg, Monte Carlo procedure for statistical mechanical calculations in a grand canonical ensemble of lattice systems, J. Chem. Phys., 38 (1963), 2861–2875
121.
D. A. Chesnut, Z. W. Salsburg, Monte Carlo calculations for the two-dimensional triangular lattice gas: supercritical region, J. Chem. Phys., 39 (1963), 2081–2084
122.
E. B. Smith, K. R. Lea, Thermodynamic properties of mixtures of hard sphere molecules by Monte Carlo methods, Trans. Faraday Soc., 59 (1963), 1535–1543
123.
Lloyd D. Fosdick, Calculation of order parameters in a binary alloy by the Monte Carlo method, Phys. Rev. (2), 116 (1959), 565–573
124.
P. A. Flinn, G. M. McManus, Monte Carlo calculation of the order-disorder transformation in the body-centered cubic lattice, Phys. Rev. (2), 124 (1961), 54–59
125.
J. R. Beeler, Jr., High speed computer experiment techniques: Many particle systems, Rep., GEMP-252, General Electric Co., Schenectady, New York, 1963
126.
L. D. Fosdick, Monte Carlo computations on the Ising latticeMethods in Computational Physics, Vol. I, Academic Press, New York, 1963, 245–280
127.
M. N. Rosenbluth, A. W. Rosenbluth, Monte Carlo calculation of the average extension of molecular chains, J. Chem. Phys., 23 (1955), 356–359
128.
P. J. Marcer, Masters Thesis, Further investigations of the mean dimensions of non-intersecting chains on simple lattices, Doctoral thesis, Oxford University, Oxford, 1960
129.
M. A. D. Fluendy, E. B. Smith, The application of Monte Carlo methods to physicochemical problems, Quart. Rev. Chem. Soc., London, 16 (1962), 241–266
130.
M. A. D. Fluendy, Calculation of cyclization probabilities and other configuration properties of alkane-type chains by a Monte Carlo method, Trans. Faraday Soc., 59 (1963), 1681–1694
131.
N. C. Blais, D. L. Bunker, Monte Carlo calculations (Reaction kinetics), J. Chem. Phys., 37 (1962), 2713–2720, 39 (1963), pp. 315–322
132.
I. M. Gelfand, A. M. Yaglom, Integration in function spaces and its application to quantum physics, Uspehi Mat. Nauk (N.S.), 11 (1956), 77–114
133.
I. M. Gelfand, N. N. Chentsov, The evaluation of Wiener integrals, Zh. Eksper. Teoret Fiz., 31 (1956), 1106–1107
134.
I. M. Gelfand, A. S. Frolov, N. N. Chentsov, The computation of continuous integrals by the Monte Carlo method, Izv. Vysš. Učebn. Zaved. Matematika, 1958 (1958), 32–45
135.
Lloyd D. Fosdick, The Monte Carlo method in quantum statistics, SIAM Rev., 10 (1968), 315–328
136.
E. M. Gerlbard, J. Spanier, Use of superposition principle in Monte Carlo resonance escape calculations, Trans. Amer. Nuclear Soc., 7 (1964), 259–260
137.
I. B. Motskus, On a method of distributing random trials for solving multi-extremal problems, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 380–385
138.
I. Matyas, Random optimization, Avtomat. i Telemeh, 26 (1965), 246–253
139.
Ryszard Zieliński, On the Monte-Carlo evaluation of the extremal value of a function, Algorytmy, 2 (1965), 7–13
140.
A. Rényi, On the theory of random search, Bull. Amer. Math. Soc., 71 (1965), 809–828
141.
B. Jansson, Masters Thesis, Random number generators, Doctoral thesis, Faculty of Mathematics and Natural Sciences, University of Stockholm, 1966
142.
T. E. Hull, A. R. Dobell, Random number generators, SIAM Rev., 4 (1962), 230–254, reprinted in [4]
143.
J. H. Halton, On the generation of arbitrarily autocorrelated sequences of random variables from a sequence of independent random numbers, Rep., AMD-322, Brookhaven National Laboratory, Upton, N.Y., 1963
144.
E. S. Page, Pseudo-random elements for computers, Appl. Statist., 8 (1959), 124–131, reprinted in [4]
145.
J. von Neumann, Various techniques used in connection with random digitsMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series No. 12, U.S. Government Printing Office, Washington, D.C., 1951, 36–38, reprinted in [4]
146.
James W. Butler, H. A. Meyer, Machine sampling from given probability distributions, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 249–264
147.
D. F. Votaw, Jr., J. A. Rafferty, High speed sampling, Math. Tables and Other Aids to Computation, 5 (1951), 1–8
148.
J. C. Butcher, Random sampling from the normal distribution, Comput. J., 3 (1960/1961), 251–253
149.
G. Marsaglia, Expressing a random variable in terms of uniform random variables, Ann. Math. Statist., 32 (1961), 894–898
150.
G. Marsaglia, M. D. MacLaren, T. A. Bray, A fast procedure for generating normal random variables, Comm. ACM, 7 (1964), 4–10, reprinted in [4]
151.
G. E. P. Box, M. E. Muller, A note on the generation of random normal deviates, Ann. Math. Statist., 29 (1958), 610–611
152.
Mervin E. Muller, A comparison of methods for generating normal deviates on digital computers, J. Assoc. Comput. Mach., 6 (1959), 376–383, reprinted in [4]
153.
G. Bánkövi, A note on the generation of beta distributed and gamma distributed random variables, Magyar Tud. Akad. Mat. Kutató Int. Közl., 9 (1965), 555–563 (1965)
154.
András Békéssy, Remarks on beta distributed random numbers, Magyar Tud. Akad. Mat. Kutató Int. Közl., 9 (1965), 565–571 (1965)
155.
G. Marsaglia, Generating exponential random variables, Ann. Math. Statist., 32 (1961), 899–900
156.
G. Marsaglia, Generating discrete random variables in a computer, Comm. ACM, 6 (1963), 37–38
157.
Masaaki Sibuya, On exponential and other random variable generators, Ann. Inst. Statist. Math., 13 (1961/1962), 231–237
158.
J. V. Uspensky, Introduction to Mathematical Probability, McGraw-Hill, New York, 1937
159.
Buffon, Essai d'arithmétique morale, 1777
160.
A. Hall, On an experimental determination of $\pi$, Messeng. Math., 2 (1873), 113–114
161.
J. W. L. Glaisher, Remarks on the calculation of $\pi$, Messeng. Math., 2 (1873), 119–128
162.
Nathan Mantel, An extension of the Buffon needle problem, Ann. Math. Statistics, 24 (1953), 674–677
163.
B. C. Kahan, A practical demonstration of a needle experiment designed to give a number of concurrent estimates of $\pi$, J. Roy. Statist. Soc., A 124 (1961), 227–239
164.
M. G. Kendall, B. Babington Smith, Randomness and random sampling numbers, J. Roy. Statist. Soc., 101 (1938), 147–166, Second paper on random sampling numbers, J. Roy. Statist. Soc. Suppl., 6 (1939), pp. 51–61
165.
M. G. Kendall, B. Babington Smith, Tables of Random Sampling Numbers, Tracts for Computers, No. 24, Department of Statistics, University College, London, Cambridge University Press, Cambridge, 1954
166.
G. W. Brown, History of RAND's random digitsMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No. 12, U.S. Government Printing Office, Washington, D.C., 1951, 31–32
167.
G. W. Brown, A million random digits with 100,000 normal deviates, The Free Press, Glencoe, Ill., 1955xxv+200
168.
W. E. Thomson, ERNIE—a mathematical and statistical analysis, J. Roy. Statist. Soc., A 122 (1959), 301–324, discussion, pp. 324–333
169.
Masatugu Isida, Hiroji Ikeda, Random number generator, Ann. Inst. Statist. Math., Tokyo, 8 (1956), 119–126
170.
G. E. Forsythe, Generation and testing of random digits at the National Bureau of Standards, Los AngelesMonte Carlo Methods, National Bureau of Standards Applied Mathematics Series, No. 12, U.S. Government Printing Office, Washington, D.C., 1951, 34–35
171.
M. L. Juncosa, Random number generation on the BRL high-speed computing machines, Rep. No. 855, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., 1953, 25–
172.
Olga Taussky, John Todd, H. A. Meyer, Generation and testing of pseudo-random numbers, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 15–28
173.
N. Metropolis, H. A. Meyer, Phase shifts-middle squares-wave equations, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 29–36
174.
N. Metropolis, S. Ulam, A property of randomness of an arithmetical function, Amer. Math. Monthly, 60 (1953), 252–253, reprinted in [4]
175.
D. H. Lehmer, Mathematical methods in large-scale computing units, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, 141–146
176.
Joel N. Franklin, Deterministic simulation of random processes, Math. Comp., 17 (1963), 28–59, reprinted in [4]
177.
R. R. Coveyou, Serial correlation in the generation of pseudo-random numbers, J. Assoc. Comput. Mach., 7 (1960), 72–74, reprinted in [4]
178.
A. Rotenberg, A new pseudo-random number generator, J. Assoc. Comput. Mach., 7 (1960), 75–77, reprinted in [4]
179.
A. van Wijngarden, Mathematics and computing, Automatic Digital Computation, Proc. Symposium of the National Physics Laboratory, H.M. Stationery Office, London, 1954, 125–129
180.
Gösta Neovius, Artificial traffic trials using digital computers, Ericsson Technics, 11 (1955), 279–291
181.
M. Donald MacLaren, George Marsaglia, Uniform random number generators, J. Assoc. Comput. Mach., 12 (1965), 83–89
182.
W. J. Westlake, A uniform random number generator based on the combination of two congruential generators, J. Assoc. Comput. Mach., 14 (1967), 337–340
183.
G. E. Forsythe, Generation and testing of $1,217,370$ “random” binary digits on the SWAC, Bull Amer. Math. Soc., 57 (1951), 304–, Abstract
184.
E. Lucas, Theory of simply periodic numerical functions, Amer. J. Math., 1 (1878), 184–240, 289–321, (In French.)
185A.
R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha\sp n\pm\beta\sp n$, Ann. of Math. (2), 15 (1913/14), 30–48
185B.
R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha\sp n\pm\beta\sp n$, Ann. of Math. (2), 15 (1913/14), 49–70
186.
R. D. Carmichael, A Simple Principle of Unification in the Elementary Theory of Numbers, Amer. Math. Monthly, 36 (1929), 132–143
187.
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525–532
188.
D. W. Robinson, The Fibonacci matrix modulo m, Fibonacci Quart, 1 (1963), 29–36
189.
John Vinson, The relation of the period modulo to the rank of apparition of m in the Fibonacci sequence, Fibonacci Quart, 1 (1963), 37–45
190.
J. H. Halton, On Fibonacci residues, Fibonacci Quart, 2 (1964), 217–218
191.
John H. Halton, On a general Fibonacci identity, Fibonacci Quart., 3 (1965), 31–43
192.
J. H. Halton, A note on Fibonacci subsequences, Fibonacci Quart., 3 (1965), 321–322
193.
John H. Halton, On the divisibilty properties of Fibonacci numbers, Fibonacci Quart., 4 (1966), 217–240
194.
John H. Halton, Some properties associated with square Fibonacci numbers, Fibonacci Quart, 5 (1967), 347–355
195.
J. Certaine, On sequences of pseudo-random numbers of maximal length, J. Assoc. Comput. Mach., 5 (1958), 353–356, reprinted in [4]
196.
V. D. Barnett, The behavior of pseudo-random sequences generated on computers by the multiplicative congruential method, Math. Comp., 16 (1962), 63–69, reprinted in [4]
197A.
J. L. Allard, A. R. Dobell, T. E. Hull, Mixed congruential random number generators for decimal machines, J. Assoc. Comput. Mach., 10 (1963), 131–141, reprinted in [4]
197B.
T. E. Hull, A. R. Dobell, Mixed congruential random number generators for binary machines, J. Assoc. Comput. Mach., 11 (1964), 31–40, reprinted in [4]
198.
A. van Gelder, Some new results in pseudo-random number generation, J. Assoc. Comput. Mach., 14 (1967), 785–792
199.
N. C. Metropolis, G. Reitwiesner, J. von Neumann, Statistical treatment of values of first 2,000 decimal digits of e and of $\pi$ calculated on the ENIAC, Math. Tables and Other Aids to Computation, 4 (1950), 109–111
200.
F. Gruenberger, Further statistics on the digits of e, Math. Tables Aids Comput., 6 (1952), 123–124
201.
R. K. Pathria, A statistical analysis of the first 2,500 decimal places of e and $1/e$, Proc. Nat. Inst. Sci. India Part A, 27 (1961), 270–282
202.
R. K. Pathria, A statistical study of randomness among the first $10,000$ digits of $\pi$, Math. Comp., 16 (1962), 188–197
203.
R. K. Pathria, A statistical study of randomness among the first $60,000$ digits of e, Proc. Nat. Inst. Sci. India Part A, 30 (1964), 663–674
204.
R. D. Richtmyer, Marjorie Devaney, N. Metropolis, Continued fraction expansions of algebraic numbers, Numer. Math., 4 (1962), 68–84, reprinted in [4]
205.
J. Lach, Random number generators, Memo., 27, Yale University Computer Center, New Haven, Connecticut, 1963
206.
M. Greenberger, Method in randomness, Comm. ACM, 8 (1965), 177–179
207.
Martin Greenberger, An a priori determination of serial correlation in computer generated random numbers, Math. Comp., 15 (1961), 383–389, reprinted in [4]
208.
M. Greenberger, Notes on a new pseudo-random generator, J. Assoc. Comput. Mach., 8 (1961), 163–167, reprinted in [4]
209.
Birger Jansson, Autocorrelations between pseudo-random numbers, Nordisk Tidskr. Informations-Behandling, 4 (1964), 6–27, (BIT)
210.
Donald E. Knuth, Construction of a random sequence, Nordisk Tidskr. Informations-Behandling, 5 (1965), 246–250, (BIT)
211.
D. L. Jagerman, Some theorems concerning pseudo-random numbers, Math. Comp., 19 (1965), 418–426
212.
R. R. Coveyou, R. D. Macpherson, Fourier analysis of uniform random number generators, J. Assoc. Comput. Mach., 14 (1967), 100–119
213.
G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1960
214.
J. F. Koksma, Diophantische Approximationen, Springer, Berlin, 1957, Chelsea, New York, 1936
215A.
J. F. Koksma, L. Kuipers, Asymptotic distribution modulo 1, Papers presented at the NUFFIC International Summer Session in Science, sponsored by NATO, held in Breukelen (The Netherlands), August 1-11, P. Noordhoff N. V., Groningen, 1965iv+203
215B.
J. F. Koksma, The theory of asymptotic distribution modulo one, Compositio Math., 16 (1964), 1–22 (1964)
216.
H. Weyl, On uniform distribution of numbers modulo one, Math. Ann., 77 (1916), 313–352
217.
J. G. van der Corput, Diophantine inequalities. I: On uniform distribution modulo one, Acta Math., 56 (1931), 373–456, [In German.]
218.
J. F. Koksma, A set-theoretical theorem on uniform distribution modulo one, Compositio Math., 2 (1935), 250–258
219.
N. G. de Bruijn, P. Erdös, Sequences of points on a circle, Nederl. Akad. Wetensch., Proc., 52 (1949), 14–17 = Indagationes Math. 11, 46–49 (1949), reprinted in [4]
220.
K. F. Roth, On irregularities of distribution, Mathematika, 1 (1954), 73–79, reprinted in [4]
221.
H. Davenport, Note on irregularities of distribution, Mathematika, 3 (1956), 131–135, reprinted in [4]
222.
Vera T. Sós, On the theory of diophantine approximations. I, Acta Math. Acad. Sci. Hungar, 8 (1957), 461–472
223.
V. T. Sós, On the distribution mod 1 of the sequence $n\alpha$, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1 (1958), 127–134
224.
J. Surányi, On the ordering of the multiples of a real number mod 1, Ann. Univ. Sci. Budapest Eotvos Sect. Math., 1 (1958), 107–111, (In German.)
225.
S. Świerczkowski, On successive settings of an arc on the circumference of a circle, Fund. Math., 46 (1959), 187–189
226.
John H. Halton, The distribution of the sequence $\{n\xi \}\,(n=0,\,1,\,2,\,\cdots )$, Proc. Cambridge Philos. Soc., 61 (1965), 665–670, reprinted in [4]
227.
Robert E. Greenwood, Coupon collector's test for random digits, Math. Tables Aids Comput., 9 (1955), 1–5
228.
F. Gruenberger, A. M. Mark, Tests of random digits, Math. Tables Aids Comput., 4 (1950), 244–245, The d2-test, 5 (1951), pp. 109–110
229.
A. Ostrowski, Remarks on the theory of Diophantine approximation, Abh. Math. Sem. Univ. Hamburg, 1 (1922), 77–98
230.
J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math., 2 (1960), 84–90, reprinted in [4]; Algorithm 247: radical-inverse quasi-random point sequence [G5], Comm. ACM, 7 (1964), pp. 701–702 (with G. B. Smith)
231.
Hyman Gabai, On the discrepancy of certain sequences ${\rm mod}\ 1$, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., 25 (1963), 603–605
232.
Seymour Haber, On a sequence of points of interest for numerical quadrature, J. Res. Nat. Bur. Standards Sect. B, 70B (1966), 127–136
233.
J. H. Halton, S. C. Zaremba, The extreme and $L\sp{2}$ discrepancies of some plane sets, Monatsh. Math., 73 (1969), 316–328
234.
P. Roos, L. Arnold, Numerical experiments in multidimensional quadrature, Sitz. Osterreich. Akad. Wiss. (Math. Natur. Kl.), 172:II (1963), 271–286
235.
R. D. Richtmyer, The evaluation of definite integrals, and a quasi-Monte-Carlo method based on the properties of algebraic numbers, Rep., LA-1342, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1951
236.
L. G. Peck, On uniform distribution of algebraic numbers, Proc. Amer. Math. Soc., 4 (1953), 440–443
237.
R. D. Richmyer, A non-random sampling method, based on congruences, for “Monte Carlo” problems, NYO 8674, Atomic Energy Commission Computer and Applied Mathematics Center, New York University, 1958
238.
S. C. Zaremba, Good lattice points in the sense of Hlawka and Monte Carlo integration, Monatsh. Math., 72 (1968), 264–269
239.
S. C. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math., 21 (1968), 85–96
240.
J. H. Halton, On sequences of random variables in separable Frechet spaces, in preparation
241.
J. H. Halton, An Introduction to the Monte Carlo Method, Prentice-Hall, Englewood Cliffs, New Jersey, to be published
242.
J. H. Halton, On the strong convergence of linear averages of generalized random variables, in preparation
243.
S. Faedo, Order of magnitude of Euler-Fourier coefficients of functions of two variables, Ann. Scuola Norm. Sup. Pisa, II (1937), 225–246
244.
J. G. van der Corput, Distribution functions, Nederl. Akad. Wetensch. Proc. Ser. A, 38 (1938), 813–821, 1058–1066, 39 (1939), pp. 10–19, 19–26, 149–153, 339–344, 489–494, 579–590. (See especially 38 (1938), pp. 1058–1066.) [In German.]
245.
J. H. Halton, On the inadequacy of the sample-variance as an error-estimate in quasi-Monte-Carlo calculations, in preparation
246.
J. H. Halton, E. A. Zeidman, Monte Carlo integration with sequential stratification, Comp. Sci. Tech. Rep., 61, University of Wisconsin, Madison, 1969
247.
Jerome Spanier, Ely M. Gelbard, Monte Carlo principles and neutron transport problems, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969xiv+234
248.
J. H. Halton, A retrospective and prospective survey of the Monte Carlo method, Comp. Sci. Tech. Rep., 13, University of Wisconsin, Madison, 1968
249.
E. A. Zeidman, The evaluation of multidimensional integrals by sequential stratification, in preparation
250.
I. M. Gelfand, Lectures on linear algebra, Translated from the revised second Russian edition by A. Shenitzer, Interscience Tracts in Pure and Applied Mathematics, No. 9. Interscience Publishers, New York-London, 1961ix+185
251.
Georgi E. Shilov, An introduction of theory of linear spaces, Translated from the Russian by Richard A. Silverman, Prentice-Hall Inc., Englewood Cliffs, N.J., 1961ix+310

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 1 - 63
ISSN (online): 1095-7200

History

Submitted: 4 March 1968
Published online: 18 July 2006

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media