Abstract

We present an iterative algorithm which asymptotically scales the $\infty$-norm of each row and each column of a matrix to one. This scaling algorithm preserves symmetry of the original matrix and shows fast linear convergence with an asymptotic rate of 1/2. We discuss extensions of the algorithm to the 1-norm, and by inference to other norms. For the 1-norm case, we show again that convergence is linear, with the rate dependent on the spectrum of the scaled matrix. We demonstrate experimentally that the scaling algorithm improves the conditioning of the matrix and that it helps direct solvers by reducing the need for pivoting. In particular, for symmetric matrices the theoretical and experimental results highlight the potential of the proposed algorithm over existing alternatives.

Keywords

  1. sparse matrices
  2. matrix scaling
  3. equilibration

MSC codes

  1. 05C50
  2. 65F35
  3. 65F50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
E. Achilles, Implications of convergence rates in Sinkhorn balancing, Linear Algebra Appl., 187 (1993), pp. 109--112.
2.
P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15--41.
3.
P. R. Amestoy, I. S. Duff, D. Ruiz, and B. Uçar, A parallel matrix scaling algorithm, in 8th International Conference on High Performance Computing for Computational Science - VECPAR 2008, Lecture Notes in Comput. Sci. 5336, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 301--313.
4.
P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32 (2006), pp. 136--156.
5.
F. L. Bauer, Optimally scaled matrices, Numer. Math., 5 (1963), pp. 73--87.
6.
F. L. Bauer, Remarks on optimally scaled matrices, Numer. Math., 13 (1969), pp. 1--3.
7.
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
8.
G. D. Birkhoff, Tres observaciones sobre el algebra lineal, Universidad Nacional de Tucuman Revista, Serie A, 5 (1946), pp. 147--151.
9.
A. Borobia and R. Cantó, Matrix scaling: A geometric proof of Sinkhorn's theorem, Linear Algebra Appl., 268 (1998), pp. 1--8.
10.
R. A. Brualdi, S. V. Parter, and H. Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. Appl., 16 (1966), pp. 31--50.
11.
R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Encyclopedia Math. Appl. 39, Cambridge University Press, Cambridge, New York, 1991.
12.
J. R. Bunch, Equilibration of symmetric matrices in the max-norm, J. Assoc. Comput. Mach., 18 (1971), pp. 566--572.
13.
J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric indefinite systems of linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639--655.
14.
A. R. Curtis and J. K. Reid, On the automatic scaling of matrices for Gaussian elimination, IMA J. Appl. Math., 10 (1972), pp. 118--124.
15.
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201--213.
16.
I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press, London, 1986.
17.
I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889--901.
18.
I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973--996.
19.
I. S. Duff and S. Pralet, Strategies for scaling and pivoting for sparse symmetric indefinite problems, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 313--340.
20.
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
21.
P. A. Knight, The Sinkhorn--Knopp algorithm: Convergence and applications, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 261--275.
22.
P. A. Knight and D. Ruiz, A fast algorithm for matrix balancing, IMA J. Numer. Anal., 33 (2013), pp. 1029--1047.
23.
O. E. Livne and G. H. Golub, Scaling by binormalization, Numer. Algorithms, 35 (2004), pp. 97--120.
24.
B. N. Parlett and T. L. Landis, Methods for scaling to double stochastic form, Linear Algebra Appl., 48 (1982), pp. 53--79.
25.
H. Perfect and L. Mirsky, The distribution of positive elements in doubly-stochastic matrices, J. London Math. Soc., 40 (1965), pp. 689--698.
26.
U. G. Rothblum, H. Schneider, and M. H. Schneider, Scaling matrices to prescribed row and column maxima, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1--14.
27.
D. Ruiz, A Scaling Algorithm to Equilibrate Both Rows and Columns Norms in Matrices, Technical Report RAL-TR-2001-034 and RT/APO/01/4, Rutherford Appleton Laboratory, Oxon, UK and ENSEEIHT-IRIT, Toulouse, France, 2001.
28.
M. H. Schneider and S. Zenios, A comparative study of algorithms for matrix balancing, Oper. Res., 38 (1990), pp. 439--455.
29.
R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist., 35 (1964), pp. 876--879.
30.
R. Sinkhorn, Diagonal equivalence to matrices with prescribed row and column sums, Amer. Math. Monthly, 74 (1967), pp. 402--405.
31.
R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math., 21 (1967), pp. 343--348.
32.
R. Sinkhorn and P. Knopp, Problems involving diagonal products in nonnegative matrices, Trans. Amer. Math. Soc., 136 (1969), pp. 67--75.
33.
G. W. Soules, The rate of convergence of Sinkhorn balancing, in Proceedings of the First Conference of the International Linear Algebra Society (Provo, UT, 1989), Linear Algebra Appl., 150 (1991), pp. 3--40.
34.
A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14 (1969), pp. 14--23.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 931 - 955
ISSN (online): 1095-7162

History

Submitted: 25 February 2011
Accepted: 16 April 2014
Published online: 17 July 2014

Keywords

  1. sparse matrices
  2. matrix scaling
  3. equilibration

MSC codes

  1. 05C50
  2. 65F35
  3. 65F50

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media