Improved Constant-Time Approximation Algorithms for Maximum Matchings and Other Optimization Problems

We study constant-time approximation algorithms for bounded-degree graphs, which run in time independent of the number of vertices $n$. We present an algorithm that decides whether a vertex is contained in a some fixed maximal independent set with expected query complexity $O(d^2)$, where $d$ is the degree bound. Using this algorithm, we show constant-time approximation algorithms with certain multiplicative error and additive error $\epsilon n$ for many other problems, e.g., the maximum matching problem, the minimum vertex cover problem, and the minimum set cover problem, that run exponentially faster than existing algorithms with respect to $d$ and $\frac{1}{\epsilon}$. Our approximation algorithm for the maximum matching problem can be transformed to a two-sided error tester for the property of having a perfect matching. On the contrary, we show that every one-sided error tester for the property requires at least $\Omega(n)$ queries.

  • 1.  N. Alon , On constant time approximation of parameters of bounded degree graphs , Property Testing , 6390 ( 2011 ), pp. 234 -- 239 . CrossrefGoogle Scholar

  • 2.  J. Aronson M. Dyer A. Frieze and  S. Suen , Randomized greedy matching II , Random Structures Algorithms , 6 ( 1995 ), pp. 55 -- 73 . CrossrefISIGoogle Scholar

  • 3.  A. S. Asratian T. M. J. Denley and  R. Häggkvist , Bipartite Graphs and Their Applications , Cambridge University Press , Cambridge, UK , 1998 . Google Scholar

  • 4.  A. Czumaj and  C. Sohler , Sublinear-time algorithms , Bull. Euro. Assoc. Theor. Comput. Sci. EATCS , 89 ( 2006 ), pp. 23 -- 47 . Google Scholar

  • 5.  M. Dyer and  A. Frieze , Randomized greedy matching , Random Structures Algorithms , 2 ( 1991 ), pp. 29 -- 45 . CrossrefISIGoogle Scholar

  • 6.  M. R. Garey and  D. S. Johnson , Computers and Intractability: A Guide to the Theory of NP-Completeness , W. H. Freeman , New York , 1979 . Google Scholar

  • 7.  O. Goldreich , Combinatorial property testing - a survey , in Randomization Methods in Algorithm Design , American Mathematical Society , Providence, RI , 1998 , pp. 45 -- 60 . Google Scholar

  • 8.  O. Goldreich , Introduction to testing graph properties , Property Testing , 6390 ( 2011 ), pp. 105 -- 141 . CrossrefGoogle Scholar

  • 9.  O. Goldreich S. Goldwasser and  D. Ron , Property testing and its connection to learning and approximation , J. ACM , 45 ( 1998 ), pp. 653 -- 750 . CrossrefISIGoogle Scholar

  • 10.  O. Goldreich and  D. Ron , Property testing in bounded degree graphs , Algorithmica , 32 ( 2002 ), pp. 302 -- 343 . CrossrefISIGoogle Scholar

  • 11.  R. Kumar and  R. Rubinfeld , Sublinear time algorithms , SIGACT News , 34 ( 2003 ), pp. 57 -- 67 . CrossrefGoogle Scholar

  • 12.  L. Lovász , On the ratio of optimal integral and fractional covers , SIAM J. Discrete Math. , 13 ( 1975 ), pp. 383 -- 390 . CrossrefISIGoogle Scholar

  • 13.  S. Marko and  D. Ron , Approximating the distance to properties in bounded-degree and general sparse graphs , ACM Trans. Algorithms , 5 ( 2009 ), pp. 1 -- 28 . CrossrefISIGoogle Scholar

  • 14.  H. N. Nguyen and  K. Onak , Constant-time approximation algorithms via local improvements , in Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science , 2008 , pp. 327 -- 336 . Google Scholar

  • 15.  K. Onak D. Ron M. Rosen and  R. Rubinfeld , A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size , in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms , 2012 , pp. 1123 -- 1131 . Google Scholar

  • 16.  M. Parnas and  D. Ron , Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms , Theoret. Comput. Sci. , 381 ( 2007 ), pp. 183 -- 196 . CrossrefISIGoogle Scholar

  • 17.  D. Ron , Algorithmic and analysis techniques in property testing , Found. Trends Theor. Comput. Sci. , 5 ( 2010 ), pp. 73 -- 205 . CrossrefGoogle Scholar

  • 18.  R. Rubinfeld and  M. Sudan , Robust characterizations of polynomials with applications to program testing , SIAM J. Comput. , 25 ( 1996 ), pp. 252 -- 271 . LinkISIGoogle Scholar