Canonical polyadic decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be columnwise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint. Second, we give a simple proof of the existence of the optimal low-rank approximation of a tensor in the case that a factor matrix is columnwise orthonormal. Third, we derive numerical algorithms for the computation of the constrained CPD. In particular, orthogonality-constrained versions of the CPD methods based on simultaneous matrix diagonalization and alternating least squares are presented. Numerical experiments are reported.

  • 1.  L. Albera A. Ferréol P. Comon and  P. Chevalier , Blind Identification of Overcomplete MixturEs of sources (BIOME) , Linear Algebra Appl. , 391 ( 2004 ), pp. 3 -- 30 . CrossrefISIGoogle Scholar

  • 2.  C. F. Beckmann and  S. M. Smith , Tensorial extension of independent component analysis for multisubject fMRI analysis , Neuroimage , 25 ( 2005 ), pp. 294 -- 311 . CrossrefISIGoogle Scholar

  • 3.  J.-F. Cardoso and  A. Souloumiac , Blind beamforming for non-Gaussian signals , IEEE Proc.-F , 140 ( 1993 ), pp. 362 -- 370 . Google Scholar

  • 4.  J.-F. Cardoso and  A. Souloumiac , Jacobi angles for simultaneous diagonalization , SIAM J. Matrix Anal. Appl. , 17 ( 1996 ), pp. 161 -- 164 . LinkISIGoogle Scholar

  • 5.  J. Carroll J. Chang and  Analysis “Eckart-Youngdecomposition, Psychometrika , 9 ( 1970 ), pp. 267 -- 283 . Google Scholar

  • 6.  J. Chen and  Y. Saad , On the tensor SVD and the optimal low rank orthogonal approximation of tensors , SIAM J. Matrix Anal. Appl. , 30 ( 2009 ), pp. 1709 -- 1734 . LinkISIGoogle Scholar

  • 7.  P. Comon , Independent component analysis: A new concept? , Signal Processing , 36 ( 1994 ), pp. 287 -- 314 . CrossrefISIGoogle Scholar

  • 8.  L. De Lathauwer , A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization , SIAM J. Matrix Anal. Appl. , 28 ( 2006 ), pp. 642 -- 666 . LinkISIGoogle Scholar

  • 9.  L. De Lathauwer and  J. Castaing . Cardoso, Fourth-order cumulant based identification of underdetermined mixtures , IEEE Trans. Signal Process. , 55 ( 2007 ), pp. 2965 -- 2973 . CrossrefISIGoogle Scholar

  • 10.  L. De Lathauwer , Algebraic methods after prewhitening, in Handbook of Blind Source Separation, Independent Component Analysis and Applications, P. Comon and C. Jutten, eds., Academic Press , New York , 2010 , pp. 155 -- 177 . Google Scholar

  • 11.  L. De Lathauwer and B. De Moor, ICA techniques for more sources than sensors, in Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics (HOS'99), Caesarea, Israel, 1999, pp. 121--124. Google Scholar

  • 12.  L. De Lathauwer and B. De Moor, On the blind separation of non-circular sources, in Proceedings of the 11th European Signal Processing Conference (EUSIPCO 2002), Toulouse, France, 2002. Google Scholar

  • 13.  L. De Lathauwer B. De Moor and  J. Vandewalle , A multilinear singular value decomposition , SIAM J. Matrix Anal. Appl. , 21 ( 2000 ), pp. 1253 -- 1278 . LinkISIGoogle Scholar

  • 14.  L. De Lathauwer B. De Moor and  J. Vandewalle , On the best rank-I and rank-$({R}_1, {R}_2,\ldots, {R}_{N})$ approximation of higher-order tensors , SIAM J. Matrix Anal. Appl. , 21 ( 2000 ), pp. 1324 -- 1342 . LinkISIGoogle Scholar

  • 15.  V. De Silva . Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem , SIAM J. Matrix Anal. Appl. , 30 ( 2008 ), pp. 1084 -- 1127 . LinkISIGoogle Scholar

  • 16.  A. S. Field and  D. Graupe , Topographic component (parallel factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition , Brain Topography , 3 ( 1991 ), pp. 407 -- 423 . CrossrefGoogle Scholar

  • 17.  R. A. Harshman , Foundations of the PARAFAC procedure: Models and conditions for an explanatory multimodal factor analysis , UCLA Working Papers in Phonetics , 16 ( 1970 ), pp. 1 -- 84 . Google Scholar

  • 18.  R. A. Harshman and  M. E. Lundy , Data Preprocessing and the Extended PARAFAC Model, in Research Methods for Multimode Data Analysis, H. G. Law, C. W. Snyder, J. R. Hattie, and R. P. McDonald, eds ., Praeger , 1984 , pp. 216 -- 284 . Google Scholar

  • 19.  R. A. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985. Google Scholar

  • 20.  M. Ishteva P.-A. Absil and  S. Van Huffel . De Lathauwer, Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme , SIAM J. Matrix Anal. Appl. , 32 ( 2011 ), pp. 115 -- 135 . LinkISIGoogle Scholar

  • 21.  M. Ishteva L. De Lathauwer and  P.-A. Absil . Van Huffel, Tucker compression and local optima , Chemometrics and Intelligent Laboratory Systems , 106 ( 2010 ), pp. 57 -- 64 . CrossrefISIGoogle Scholar

  • 22.  T. Jiang and  N. D. Sidiropoulos , Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , IEEE Trans. Signal Process. , 52 ( 2004 ), pp. 2625 -- 2636 . CrossrefISIGoogle Scholar

  • 23.  T. Jiang N. D. Sidiropoulos and  J. M. . Ten Berge, Almost-sure identifiability of multidimensional harmonic retrieval , IEEE Trans. Signal Process. , 49 ( 2001 ), pp. 1849 -- 1859 . CrossrefISIGoogle Scholar

  • 24.  A. Karfoul, L. Albera, and L. De Lathauwer, Canonical decomposition of even higher order cumulant arrays for blind underdetermined mixture identification, in Proceedings of the 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2008), Darmstadt, Germany, 2008. Google Scholar

  • 25.  H. A. . Kiers, Towards a standardized notation and terminology in multiway analysis , J. Chemometrics , 14 ( 2000 ) 105 -- 122 . CrossrefISIGoogle Scholar

  • 26.  W. P. Krijnen T. K. Dijkstra A. Stegeman and  On “degeneracy ” in the CANDECOMP/PARAFAC model, Psychometrika , 73 ( 2008 ), pp. 431 -- 439 . CrossrefISIGoogle Scholar

  • 27.  P. M. Kroonenberg, Three-Mode Principal Component Analysis. Theory and Applications, DSWO Press, Leiden, The Netherlands, 1983. Google Scholar

  • 28.  P. M. Kroonenberg, Applied Multiway Data Analysis, Wiley, Hoboken, NJ, 2008. Google Scholar

  • 29.  J. B. Kruskal : Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics , Linear Algebra Appl. , 18 ( 1977 ), pp. 95 -- 138 . CrossrefISIGoogle Scholar

  • 30.  S. Miron, X. Guo, and D. Brie, DOA estimation for polarized sources on a vector-sensor array by PARAFAC decomposition of the fourth-order covariance tensor, in Proceedings of the 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, 2008. Google Scholar

  • 31.  C. Moravitz Martin and  C. . Van Loan, A Jacobi-type method for computing orthogonal tensor decompositions , SIAM J. Matrix Anal. Appl. , 30 ( 2008 ), pp. 1219 -- 1232 . LinkISIGoogle Scholar

  • 32.  B. Pesquet-Popoescu, J.-C. Pesquet, and A. P. Petropulu, Joint singular value decomposition: A new tool for separable representation of images, in Proceedings of the 2001 International Conference on Image Processing (ICIP 2001), 2001, pp. 569--572. Google Scholar

  • 33.  B. Savas . Lim, Quasi-Newton methods on Grassmannians and multilinear approximations of tensors , SIAM J. Sci. Comput. , 32 ( 2010 ), pp. 3352 -- 3393 . LinkISIGoogle Scholar

  • 34.  N. D. Sidiropoulos and  R. Bro , On the uniqueness of multilinear decomposition of $\uppercase{N}$-way arrays , J. Chemometrics , 14 ( 2000 ), pp. 229 -- 239 . CrossrefISIGoogle Scholar

  • 35.  N. D. Sidiropoulos G. B. Giannakis and  R. Bro , Blind PARAFAC receivers for DS-CDMA systems , IEEE Trans. Signal Process. , 48 ( 2000 ), pp. 810 -- 823 . CrossrefISIGoogle Scholar

  • 36.  M. Sørensen L. De Lathauwer and  L. Deneire , PARAFAC with orthogonality in one mode and applications in DS-CDMA systems , in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2010 ), Dallas, TX, 2010 . Google Scholar

  • 37.  A. Stegeman , On uniqueness of the $n$th order tensor decomposition into rank-1 terms with linear independence in one mode , SIAM J. Matrix Anal. Appl. , 31 ( 2010 ), pp. 2498 -- 2516 . LinkISIGoogle Scholar

  • 38.  J. M. F. Ten Berge, Least Squares Optimization in Multivariate Analysis, DSWO Press, Leiden, The Netherlands, 1993. Google Scholar

  • 39.  J. M. . Ten Berge and N. D. Sidiropoulos, On uniqueness in CANDECOMP/PARAFAC , Psychometrika , 67 ( 2002 ), pp. 399 -- 409 . CrossrefISIGoogle Scholar

  • 40.  L. R. Tucker , Some mathematical notes on the three-mode factor analysis , Psychometrika , 31 ( 1966 ), pp. 279 -- 311 . CrossrefISIGoogle Scholar