Abstract

We study the problem of testing isomorphism (equivalence up to relabeling of the input variables) between Boolean functions. We prove the following: (1) For most functions $f:\{0,1\}^n \to \{0,1\}$, the query complexity of testing isomorphism to $f$ is $\Omega(n)$. Moreover, the query complexity of testing isomorphism to most $k$-juntas $f:\{0,1\}^n \to \{0,1\}$ is $\Omega(k)$. (2) Isomorphism to any $k$-junta $f:\{0,1\}^n \to \{0,1\}$ can be tested with $O(k \log k)$ queries. (3) For some $k$-juntas $f:\{0,1\}^n \to \{0,1\}$, testing isomorphism to $f$ with one-sided error requires $\Omega(k\log(n/k))$ queries. In particular, testing whether $f:\{0,1\}^n \to \{0,1\}$ is a $k$-parity with one-sided error requires $\Omega(k\log(n/k))$ queries. (4) The query complexity of testing isomorphism between two unknown functions $f,g:\{0,1\}^n \to \{0,1\}$ is $\widetilde{\Theta}(2^{n/2})$. These bounds are tight up to logarithmic factors, and they significantly strengthen the bounds proved by Fischer, Kindler, Ron, Safra, and Samorodnitsky [J. Comput. System Sci., 68 (2004), pp. 753--787] and Blais and O'Donnell [Proceedings of the IEEE Conference on Computational Complexity, 2010, pp. 235--246]. We also obtain results closely related to isomorphism testing, answering a question posed by Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan [Proceedings of the IEEE Symposium on Foundations of Computer Science, 2007, pp. 549--558]: testing whether a function $f:\{0,1\}^n \to \{0,1\}$ can be computed by a circuit of size $\le s$ requires $s^{\Omega(1)}$ queries. All of our lower bounds apply to general (adaptive) testers.

Keywords

  1. property testing
  2. isomorphism
  3. Boolean functions

MSC codes

  1. 68Q17

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. Alon and E. Blais, Testing Boolean function isomorphism, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Comput. Sci. 6302, Springer, Berlin, 2010, pp. 394--405.
2.
N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs, Combinatorica, 20 (2000), pp. 451--476.
3.
N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, New York, 1992.
4.
E. Blais, J. Brody, and K. Matulef, Property testing lower bounds via communication complexity, in Proceedings of the 26th Annual IEEE Conference on Computational Complexity, 2011, pp. 210--220.
5.
L. Babai and S. Chakraborty, Property testing of equivalence under a permutation group action, ACM Trans. Comput. Theory, to appear.
6.
I. Ben-Eliezer, R. Hod, and S. Lovett, Random low degree polynomials are hard to approximate, Comput. Complexity, 21 (2012), pp. 63--81.
7.
T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White, Testing random variables for independence and identity, in Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 442--451.
8.
E. Blais, Testing juntas nearly optimally, in Proceedings of the ACM Symposium on Theory of Computing, ACM, New York, 2009, pp. 151--158.
9.
M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical problems, in Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, ACM, New York, 1990, pp. 73--83.
10.
E. Blais and R. O'Donnell, Lower bounds for testing function isomorphism, in Proceedings of the 25th Annual IEEE Conference on Computational Complexity, 2010, pp. 235--246.
11.
H. Chockler and D. Gutfreund, A lower bound for testing juntas, Inform. Process. Lett., 90 (2004), pp. 301--305.
12.
S. Chakraborty, D. García-Soriano, and A. Matsliah, Efficient sample extractors for juntas with applications, in Automata, Languages and Programming. Part I, Lecture Notes in Comput. Sci. 6755, Springer, Heidelberg, 2011, pp. 545--556.
13.
S. Chakraborty, D. García-Soriano, and A. Matsliah, Nearly tight bounds for testing function isomorphism, in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, 2011, pp. 1683--1702.
14.
Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky, Improved testing algorithms for monotonicity, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Comput. Sci. 1671, Springer, Berlin, 1999, pp. 97--108.
15.
I. Diakonikolas, H. K. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. A. Servedio, and A. Wan, Testing for concise representations, in Proceedings of the IEEE Symposium on Foundations of Computer Science, 2007, pp. 549--558.
16.
E. Fischer, The art of uninformed decisions: A primer to property testing, Bull. Eur. Assoc. Theor. Comput. Sci., No. 75 (2001), pp. 97--126.
17.
E. Fischer, The difficulty of testing for isomorphism against a graph that is given in advance, SIAM J. Comput., 34 (2005), pp. 1147--1158.
18.
E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky, Testing juntas, J. Comput. System Sci., 68 (2004), pp. 753--787.
19.
E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky, Monotonicity testing over general poset domains, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 474--483.
20.
E. Fischer and A. Matsliah, Testing graph isomorphism, SIAM J. Comput., 38 (2008), pp. 207--225.
21.
E. Fischer, I. Newman, and J. Sgall, Functions that have read-twice constant width branching programs are not necessarily testable, Random Structures Algorithms, 24 (2004), pp. 175--193.
22.
P. Frankl and V. Rödl, Forbidden intersections, Trans. Amer. Math. Soc., 300 (1987), pp. 259--286.
23.
P. Frankl and M. Wilson, Intersection theorems with geometric consequences, Combinatorica, 1 (1981), pp. 357--368.
24.
O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky, Testing monotonicity, Combinatorica, 20 (2000), pp. 301--337.
25.
O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning and approximation, J. ACM, 45 (1998), pp. 653--750.
26.
O. Goldreich, On testing computability by small width OBDDS, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Comput. Sci. 6302, Springer, Berlin, 2010, pp. 574--587.
27.
A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdös, in Combinatorial Theory and Its Applications, II, North-Holland, Amsterdam, 1970, pp. 601--623.
28.
S. Jukna, Extremal Combinatorics. With Applications in Computer Science, Springer, Berlin, 2001.
29.
P. Keevash and B. Sudakov, Set systems with restricted cross-intersections and the minimum rank of inclusion matrices, SIAM J. Discrete Math., 18 (2005), pp. 713--727.
30.
K. Matulef, R. O'Donnell, R. Rubinfeld, and R. A. Servedio, Testing halfspaces, in Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2009, pp. 256--264.
31.
K. Matulef, R. O'Donnell, R. Rubinfeld, and R. A. Servedio, Testing $\pm$$1$-weight halfspaces, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Comput. Sci. 5687, Springer-Verlag, Berlin, 2009, pp. 646--657.
32.
M. Parnas, D. Ron, and A. Samorodnitsky, Testing basic Boolean formulae, SIAM J. Discrete Math., 16 (2002), pp. 20--46.
33.
D. Ron, Property testing: A learning theory perspective, Found. Trends Mach. Learn., 1 (2008), pp. 307--402.
34.
D. Ron, Algorithmic and analysis techniques in property testing, Found. Trends Theor. Comput. Sci., 5 (2009), pp. 73--205.
35.
R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to program testing, SIAM J. Comput., 25 (1996), pp. 252--271.
36.
R. Rubinfeld and A. Shapira, Sublinear time algorithms, SIAM J. Discrete Math., 25 (2011), pp. 1562--1588.
37.
J. P. Schmidt, A. Siegel, and A. Srinivasan, Chernoff--Hoeffding bounds for applications with limited independence, SIAM J. Discrete Math., 8 (1995), pp. 223--250.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 459 - 493
ISSN (online): 1095-7111

History

Submitted: 2 May 2011
Accepted: 7 November 2012
Published online: 12 March 2013

Keywords

  1. property testing
  2. isomorphism
  3. Boolean functions

MSC codes

  1. 68Q17

Authors

Affiliations

David García-Soriano

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media