Abstract

In this work, we investigate the dynamics of a nonlocal model describing spontaneous cell polarization. It consists of a drift-diffusion equation set in the half-space, with the coupling involving the trace value on the boundary. We characterize the following behaviors in the one-dimensional case: solutions are global if the mass is below the critical mass and they blow up in finite time above the critical mass. The higher-dimensional case is also discussed. The results are reminiscent of the classical Keller–Segel system, but critical spaces are different ($L^N$ instead of $L^{N/2}$ due to the coupling on the boundary). In addition, in the one-dimensional case we prove quantitative convergence results using relative entropy techniques. This work is complemented with a more realistic model that takes into account dynamical exchange of molecular content at the boundary. In the one-dimensional case we prove that blow-up is prevented. Furthermore, density converges toward a nontrivial stationary configuration.

MSC codes

  1. 35B60
  2. 35B44
  3. 35Q92
  4. 92C17
  5. 92B05

Keywords

  1. cell polarization
  2. global existence
  3. blow-up
  4. asymptotic convergence
  5. entropy method
  6. Keller–Segel system

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
2.
B. Alberts, Molecular Biology of the Cell, 4th ed., Garland Science, New York, 2002.
3.
J.-P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), pp. 5042–5044.
4.
R. J. Biezuner, Best constants in Sobolev trace inequalities, Nonlinear Anal., 54 (2003), pp. 575–589.
5.
P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particle III, Colloq. Math., 68 (1995), pp. 229–239.
6.
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1998), pp. 845–869.
7.
A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006).
8.
V. Calvez and J. A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities, Proc. Amer. Math. Soc., to appear.
9.
V. Calvez, L. Corrias, and A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), pp. 561–584.
10.
V. Calvez, N. Meunier, and R. Voituriez, A one-dimensional Keller-Segel equation with a drift issued from the boundary boundary, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 629–634.
11.
V. Calvez, B. Perthame, and M. Sharifi tabar, Modified Keller-Segel system and critical mass for the log interaction kernel, in Nonlinear Partial Differential Equations and Related Analysis, Contemp. Math. 429, AMS, Providence, RI, 2007.
12.
A. E. Carlsson, Dendritic actin filament nucleation causes traveling waves and patches, Phys. Rev. Lett., 104 (2010), 228102.
13.
T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), pp. 437–446.
14.
L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), pp. 1–29.
15.
I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), pp. 299–318.
16.
J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $\mathbb{R}^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 611–616.
17.
J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Discrete Contin. Dyn. Syst., 25 (2009), pp. 109–121.
18.
R. J. Hawkins, O. Bénichou, M. Piel, and R. Voituriez, Rebuilding cytoskeleton roads: Active transport induced polarisation of cells, Phys. Rev. E, 80 (2009), 040903.
19.
M. A. Herrero and J. J. L. Velázquez, Singularity formation in the one-dimensional supercooled Stefan problem, European J. Appl. Math., 7 (1996), pp. 119–150.
20.
M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol., 35 (1996), pp. 177–194.
21.
P. A. Iglesias and P. N. Devreotes, Navigating through models of chemotaxis, Curr. Opin. Cell Biol., 20 (2008), pp. 35–40.
22.
J. E. Irazoqui, A. S. Howell, C. L. Theesfeld, and D. J. Lew, Opposing roles for actin in Cdc42p polarisation, Mol. Biol. Cell, 16 (2005), pp. 1296–1304.
23.
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), pp. 819–824.
24.
S. Kullback, On the convergence of discrimination information, IEEE Trans. Inform. Theory, 14 (1968), pp. 765–766.
25.
H. Levine, D. A. Kessler, and W.-J. Rappel, Directional sensing in eukaryotic chemotaxis: A balanced inactivation model, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 9761–9766.
26.
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.
27.
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci., 5 (1995), pp. 581–601.
28.
B. Nazaret, Best constant in Sobolev trace inequalities on the half-space, Nonlinear Anal., 65 (2006), pp. 1977–1985.
29.
M. Onsum and C. V. Rao, A mathematical model for neutrophil gradient sensing and polarisation, PLoS Comput. Biol., 3 (2007), e36.
30.
B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.
31.
R. B. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell, Garland Science, New York, 2009.
32.
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), pp. 65–96.
33.
J. J. L. Velázquez, Point dynamics in a singular limit of the Keller–Segel model 1: Motion of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1198–1223.
34.
J. J. L. Velázquez, Point dynamics in a singular limit of the Keller–Segel model 2: Formation of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1224–1248.
35.
R. Wedlich-Soldner, S. Altschuler, L. Wu, and R. Li, Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase, Science, 299 (2003), pp. 1231–1235.
36.
R. Wedlich-Soldner, S. C. Wai, T. Schmidt, and R. Li, Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling, J. Cell Biol., 166 (2004), pp. 889–900.
37.
S. Whitelam, T. Bretschneider, and N. J. Burroughs, Transformation from spots to waves in a model of actin pattern formation, Phys. Rev. Lett., 102 (2009), 198103.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 594 - 622
ISSN (online): 1095-712X

History

Submitted: 23 May 2011
Accepted: 25 January 2012
Published online: 12 April 2012

MSC codes

  1. 35B60
  2. 35B44
  3. 35Q92
  4. 92C17
  5. 92B05

Keywords

  1. cell polarization
  2. global existence
  3. blow-up
  4. asymptotic convergence
  5. entropy method
  6. Keller–Segel system

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media