Methods and Algorithms for Scientific Computing

A Fast Treecode for Multiquadric Interpolation with Varying Shape Parameters

Abstract

A treecode algorithm is presented for the fast evaluation of multiquadric radial basis function (RBF) approximations. The method is a dual approach to one presented by Krasny and Wang, which applies far-field expansions to clusters of RBF centers (source points). The new approach clusters evaluation points instead and is therefore easily able to cope with basis functions that have different multiquadric shape parameters. The new treecode is able to evaluate an approximation on N centers at M points in $O((N+M) \log M)$ time in the ideal case when evaluation points are uniformly distributed. When coupled with a two-level restricted additive Schwarz preconditioner for GMRES iterations, the treecode is well suited for use within an adaptive RBF iteration, previously described by Driscoll and Heryudono, as is demonstrated by experiments on test functions.

MSC codes

  1. 65D05
  2. 65F10
  3. 41A58

Keywords

  1. radial basis function interpolation
  2. treecode
  3. restricted additive Schwarz method

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Barnes and P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature, 324 (1986), pp. 446–449.
2.
R. Beatson, J. Cherrie, and C. Mouat, Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration, Adv. Comput. Math., 11 (1999), pp. 253–270.
3.
R. K. Beatson, J. B. Cherrie, and D. L. Ragozin, Fast evaluation of radial basis functions: Methods for four-dimensional polyharmonic splines, SIAM J. Math. Anal., 32 (2001), pp. 1272–1310.
4.
R. Beatson and L. Greengard, A short course on fast multipole methods, in Wavelets, Multilevel Methods and Elliptic PDEs, Numer. Math. Sci. Comput., Oxford Univ. Press, New York, 1997, pp. 1–37.
5.
R. K. Beatson and G. N. Newsam, Fast evaluation of radial basis functions: Moment-based methods, SIAM J. Sci. Comput., 19 (1998), pp. 1428–1449.
6.
R. K. Beatson, W. A. Light, and S. Billings, Fast solution of the radial basis function interpolation equations: Domain decomposition methods, SIAM J. Sci. Comput., 22 (2000), pp. 1717–1740.
7.
M. Buhmann and N. Dyn, Spectral convergence of multiquadric interpolation, Proc. Edinburgh Math. Soc. (2), 36 (1993), pp. 319–333.
8.
X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792–797.
9.
T. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl., 43 (2002), pp. 413–422.
10.
T. A. Driscoll and A. R. H. Heryudono, Adaptive residual subsampling methods for radial basis function interpolation and collocation problems, Comput. Math. Appl., 53 (2007), pp. 927–939.
11.
Z.-H. Duan and R. Krasny, An adaptive treecode for computing nonbonded potential energy in classical molecular systems, J. Comput. Chem., 22 (2001), pp. 184–195.
12.
G. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific Publishing, Hackensack, NJ, 2007.
13.
R. Franke, H. Hagen, and G. M. Nielson, Least squares surface approximation to scattered data using multiquadratic functions, Adv. Comput. Math., 2 (1994), pp. 81–99.
14.
L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp. 325–348.
15.
N. A. Gumerov and R. Duraiswami, Fast radial basis function interpolation via preconditioned Krylov iteration, SIAM J. Sci. Comput., 29 (2007), pp. 1876–1899.
16.
H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, UK, 2005.
17.
R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76 (1971), pp. 1905–1915.
18.
A. R. H. Heryudono, Adaptive Radial Basis Function Methods for the Numerical Solution of Partial Differential Equations, with Application to the Simulation of the Human Tear Film, Ph.D. thesis, University of Delaware, Newark, DE, 2008.
19.
A. R. H. Heryudono and T. A. Driscoll, Radial basis function interpolation on irregular domain through conformal transplantation, J. Sci. Comput., 44 (2010), pp. 286–300.
20.
E. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19 (1990), pp. 147–161.
21.
E. Kansa, Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations, Comput. Math. Appl., 39 (2000), pp. 123–137.
22.
R. Krasny and L. Wang, Fast evaluation of multiquadric RBF sums by a Cartesian treecode, SIAM J. Sci. Comput., 33 (2011), pp. 2341–2355.
23.
P.-J. Li, H. Johnston, and R. Krasny, A Cartesian treecode for screened Coulomb interactions, J. Comput. Phys., 228 (2009), pp. 3858–3868.
24.
L. Ling and E. J. Kansa, A least-squares preconditioner for radial basis functions collocation methods, Adv. Comput. Math., 23 (2005), pp. 31–54.
25.
T. Lyche and K. Mørken, Knot removal for parametric B-spline curves and surfaces, Comput. Aided Geom. Design, 4 (1987), pp. 217–230.
26.
W. Maydch and S. Nelson, Multivariate Interpolation and Conditionally Positive Definite Functions, Math. Comput., 54 (1990), pp. 211–230.
27.
C. A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constr. Approx., 2 (1986), pp. 11–22.
28.
C. T. Mouat, Fast Algorithms and Preconditioning Techniques for Fitting Radial Basis Function, Ph.D. thesis, University of Canterbury, 2001.
29.
R. B. Platte and T. A. Driscoll, Polynomials and potential theory for Gaussian radial basis function interpolation, SIAM J. Numer. Anal., 43 (2005), pp. 750–766.
30.
R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3 (1995), pp. 251–264.
31.
R. Schaback, Multivariate interpolation and approximation by translates of a basis function, in Approximation Theory VIII. Vol. 1, C. K. Chui and L. L. Schumaker, eds., Ser. Approx. Decompos. 6, World Scientific Publishing, River Edge, NJ, 1995, pp. 491–514.
32.
R. Schaback, On the efficiency of interpolation by radial basis functions, in Surface Fitting and Multiresolution Methods, Vanderbilt University Press, Nashville, TN, 1997, pp. 309–318.
33.
R. Yokota, L. Barba, and M. G. Knepley, PetRBF—a parallel O(N) algorithm for radial basis function interpolation with Gaussians, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 1793–1804.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1126 - A1140
ISSN (online): 1095-7197

History

Submitted: 2 June 2011
Accepted: 30 January 2012
Published online: 10 April 2012

MSC codes

  1. 65D05
  2. 65F10
  3. 41A58

Keywords

  1. radial basis function interpolation
  2. treecode
  3. restricted additive Schwarz method

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media