Abstract

Existence and uniqueness for semilinear stochastic evolution equations with additive noise by means of finite-dimensional Galerkin approximations is established and the convergence rate of the Galerkin approximations to the solution of the stochastic evolution equation is estimated. These abstract results are applied to several examples of stochastic partial differential equations (SPDEs) of evolutionary type including a stochastic heat equation, a stochastic reaction diffusion equation, and a stochastic Burgers equation. The estimated convergence rates are illustrated by numerical simulations. The main novelty in this article is the estimation of the difference of the finite-dimensional Galerkin approximations and of the solution of the infinite-dimensional SPDE uniformly in space, i.e., in the $L^\infty$-topology, instead of the usual Hilbert space estimates in the $L^2$-topology, that were shown before.

Keywords

  1. Galerkin approximations
  2. stochastic partial differential equation
  3. stochastic heat equation
  4. stochastic reaction diffusion equation
  5. stochastic Burgers equation
  6. strong error criteria

MSC codes

  1. 60H15
  2. 35K90

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Alabert and I. Gyöngy, On numerical approximation of stochastic Burgers' equation, in From stochastic calculus to mathematical finance, Springer, Berlin, 2006, pp. 1--15.
2.
D. Blömker, F. Flandoli, and M. Romito, Markovianity and ergodicity for a surface growth PDE., Ann. Probab., 37 (2009), pp. 275--313.
3.
D. Blömker and A. Jentzen, Galerkin Approximations for the Stochastic Burgers Equation, preprint, http://opus.bibliothek.uni-augsburg.de/volltexte/2009/1444 (2009).
4.
D. Blömker, M. Kamrani, and M. Hosseini, Full Discretization of Stochastic Burgers Equation with Correlated Noise, IMA J. Numer. Anal., (2013)
5.
D. Blömker, S. Maier-Paape, and G. Schneider, The stochastic Landau equation as an amplitude equation, Discrete Contin. Dynam. Systems Ser. B, 1 (2001), pp. 527--541.
6.
Z. Brzeźniak, E. Carelli, and A. Prohl, Finite Element Based Discretizations of the incompressible Navier-Stokes Equations with Multiplicative Random Forcing, IMA J. Numer. Anal., (2013)
7.
S. Cox and E. Hausenblas, A Perturbation Result for Quasi-linear Stochastic Differential Equations in UMD Banach Spaces, preprint, arXiv:1203.1606, (2012).
8.
S. Cox and J. van Neerven, Pathwise Holder Convergence of the Implicit Euler Scheme for Semi-linear SPDEs with Multiplicative Noise, preprint, arXiv:1201.4465, (2012).
9.
G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation., Nonlinear Anal., 26 (1996), pp. 241--263.
10.
G. Da Prato, A. Debussche, and R. Temam, Stochastic Burgers' equation., NoDEA Nonlinear Differential Equations Appl., 1 (1994), pp. 389--402.
11.
G. Da Prato and D. Gatarek, Stochastic Burgers equation with correlated noise, Stochastics Stochastics Rep., 52 (1995), pp. 29--41.
12.
G. Da Prato, S. Kwapien, and J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics Rep., 23 (1988), pp. 1--23.
13.
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., 44, Cambridge University Press, Cambridge, 1992.
14.
G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, London Math. Soc. Lecture Note Ser., 229, Cambridge University Press, Cambridge, 1996.
15.
P. Dörsek, Semigroup splitting and cubature approximations for the stochastic Navier-Stokes equations, SIAM J. Numer. Anal., 50 (2012), pp. 729--746.
16.
F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations., Probab. Theory Related Fields, 102 (1995), pp. 367--391.
17.
F. Flandoli and M. Romito, Markov selections for the 3D stochastic Navier-Stokes equations., Probab. Theory Related Fields, 140 (2008), pp. 407--458.
18.
W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDEs, Bull. Austral. Math. Soc., 54 (1996), pp. 79--85.
19.
M. Hairer and J. Voss, Approximations to the Stochastic Burgers Equation, preprint, arXiv:1005.4438, (2010).
20.
E. Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147 (2002), pp. 485--516.
21.
E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), pp. 141--186.
22.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840 Springer-Verlag, Berlin, 1981.
23.
A. Jentzen, Pathwise numerical approximation of SPDEs with additive noise under non-global Lipschitz coefficients, Potential Anal., 31 (2009), pp. 375--404.
24.
A. Jentzen, Taylor Expansions for Stochastic Partial Differential Equations, Dissertation, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany, 2009.
25.
A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 465 (2009), pp. 649--667.
26.
P. E. Kloeden, G. J. Lord, A. Neuenkirch, and T. Shardlow, The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds, J. Comput. Appl. Math., 235 (2011), pp. 1245--1260.
27.
P. E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations, LMS J. Comput. Math., 10 (2007), pp. 235--253.
28.
P. E. Kloeden and S. Shott, Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs, J. Appl. Math. Stochastic Anal., 14 (2001), pp. 47--53. Special issue: Advances in applied stochastics.
29.
R. Kruse, Optimal Error Estimates of Galerkin Finite Element Methods for Stochastic Partical Differential Equations with Multiplicative Noise, preprint, arXiv:1103.4504v1, (2011).
30.
D. Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Comm. Math. Sci., 1 (2003), pp. 361--375.
31.
G. J. Lord and J. Rougemont, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal., 24 (2004), pp. 587--604.
32.
G. J. Lord and T. Shardlow, Postprocessing for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 45 (2007), pp. 870--889.
33.
T. Müller-Gronbach and K. Ritter, An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise, BIT, 47 (2007), pp. 393--418.
34.
T. Müller-Gronbach and K. Ritter, Lower bounds and nonuniform time discretization for approximation of stochastic heat equations, Found. Comput. Math., 7 (2007), pp. 135--181.
35.
T. Müller-Gronbach, K. Ritter, and T. Wagner, Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise, in Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Berlin, 2007, pp. 577--589.
36.
T. Müller-Gronbach, K. Ritter, and T. Wagner, Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes, Stochastic Dynam., 8 (2008), pp. 519--541.
37.
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2001.
38.
T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Gruyter Ser. Nonlinear Anal. Appl., 3, de Gruyter, Berlin, 1996.
39.
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, vol. 143 of Appl. Math. Sci., Springer-Verlag, New York, 2002.
40.
D. Werner, Recent progress on the Daugavet property, Irish Math. Soc. Bull., 46 (2001), pp. 77--97.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 694 - 715
ISSN (online): 1095-7170

History

Submitted: 25 August 2011
Accepted: 26 October 2012
Published online: 28 February 2013

Keywords

  1. Galerkin approximations
  2. stochastic partial differential equation
  3. stochastic heat equation
  4. stochastic reaction diffusion equation
  5. stochastic Burgers equation
  6. strong error criteria

MSC codes

  1. 60H15
  2. 35K90

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media