Pointwise a Posteriori Error Control for Discontinuous Galerkin Methods for Elliptic Problems

Abstract

An a posteriori error bound for the maximum (pointwise) error for the interior penalty discontinuous Galerkin method for a standard elliptic model problem on polyhedral domains is presented. The computational domain is not required to be Lipschitz, thus allowing for domains with cracks and other irregular polyhedral domains. The proof is based on the direct use of Green's functions and varies substantially from the approach used in previous proofs of similar $L_\infty$ estimates for (continuous) finite element methods in the literature. Numerical experiments indicating the good behavior of the resulting a posteriori bounds within an adaptive algorithm are also presented.

Keywords

  1. pointwise a posteriori error estimate
  2. discontinuous Galerkin method
  3. elliptic problem
  4. adaptive algorithm

MSC codes

  1. 65N30
  2. 65N15
  3. 65N50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Y. Achdou, C. Bernardi, and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations, Numer. Math., 96 (2003), pp. 17--42.
2.
M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45 (2007), pp. 1777--1798.
3.
M. Ainsworth and R. Rankin, Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes, SIAM J. Numer. Anal., 47 (2010), pp. 4112--4141.
4.
D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), pp. 742--760.
5.
W. Bangerth, R. Hartmann, and G. Kanschat, deal.II---a general-purpose object-oriented finite element library, ACM Trans. Math. Software, 33 (2007), Art. 24.
6.
S. Bartels and R. Müller, Quasi-optimal and robust a posteriori error estimates in $L^\infty(L^2)$ for the approximation of Allen-Cahn equations past singularities, Math. Comp., 80 (2011), pp. 761--780.
7.
R. Becker, P. Hansbo, and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 723--733.
8.
M. Boman, On A Posteriori Error Analysis in the Maximum Norm, Ph.D. thesis, Chalmers University of Technology and Göteborg University, Göteborg, Sweden.
9.
A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal., 48 (2010), pp. 734--771.
10.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, 2nd ed., Springer-Verlag, New York, 2002.
11.
C. Carstensen, T. Gudi, and M. Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Numer. Math., 112 (2009), pp. 363--379.
12.
L. Chen, An innnovative finite element method package in MATLAB, Technical report, submitted.
13.
P. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique, 9 (1975), pp. 77--84.
14.
E. Dari, R. G. Durán, and C. Padra, Maximum norm error estimators for three-dimensional elliptic problems, SIAM J. Numer. Anal., 37 (2000), pp. 683--700.
15.
M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Smoothness and Asymptotics of Solutions, Lecture Notes in Math. 1341, Springer-Verlag, Berlin, 1988.
16.
M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory, 15 (1992), pp. 227--261.
17.
A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace--Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal., 45 (2007), pp. 421--442.
18.
A. Demlow, O. Lakkis, and C. Makridakis, A posteriori error estimates in the maximum norm for parabolic problems, SIAM J. Numer. Anal., 47 (2009), pp. 2157--2176.
19.
A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Walbin, Best approximation properties in the $w^1_\infty$ norm for finite element methods on graded meshes, Math. Comp., 81 (2012), pp. 743--764.
20.
A. Demlow and C. Makridakis, Sharply local pointwise a posteriori error estimates for parabolic problems, Math. Comp., 79 (2010), pp. 1233--1262.
21.
D. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. 69, Springer, Heidelberg, 2012.
22.
G. Dolzmann and S. Müller, Estimates for Green's matrices of elliptic systems by $L^p$ theory, Manuscripta Math., 88 (1995), pp. 261--273.
23.
H. Dong and S. Kim, Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains, Trans. Amer. Math. Soc., 361 (2009), pp. 3303--\fj 3323.
24.
K. Eriksson, An adaptive finite element method with efficient maximum norm error control for elliptic problems, Math. Models Methods Appl. Sci., 4 (1994), pp. 313--329.
25.
K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM J. Numer. Anal., 32 (1995), pp. 706--740.
26.
A. Ern, A. F. Stephansen, and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, J. Comput. Appl. Math., 234 (2010), pp. 114--130.
27.
A. Ern and M. Vohralík, Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids, C. R. Math. Acad. Sci. Paris, 347 (2009), pp. 441--444.
28.
D. A. French, S. Larsson, and R. H. Nochetto, Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem, Comput. Methods Appl. Math., 1 (2001), pp. 18--38.
29.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998.
30.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
31.
M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math., 37 (1982), pp. 303--342.
32.
V. Heuveline and R. Rannacher, A posteriori error control for finite approximations of elliptic eigenvalue problems, Adv. Comput. Math., 15 (2001), pp. 107--138.
33.
P. Houston, D. Schötzau, and T. P. Wihler, Energy norm a posteriori error estimation of $hp$-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci., 17 (2007), pp. 33--62.
34.
O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), pp. 2374--2399.
35.
O. A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM J. Numer. Anal., 45 (2007), pp. 641--665.
36.
J. Král and W. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential theory, Apl. Mat., 31 (1986), pp. 293--308.
37.
V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, Math. Surveys Monogr. 162, American Mathematical Society, Providence, RI, 2010.
38.
R. H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp., 64 (1995), pp. 1--22.
39.
R. H. Nochetto, A. Schmidt, K. G. Siebert, and A. Veeser, Pointwise a posteriori error estimates for monotone semi-linear equations, Numer. Math., 104 (2006), pp. 515--538.
40.
R. H. Nochetto, K. G. Siebert, and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math., 95 (2003), pp. 163--195.
41.
R. H. Nochetto, K. G. Siebert, and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems, SIAM J. Numer. Anal., 42 (2005), pp. 2118--2135.
42.
L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483--493.
43.
G. C. Verchota and A. L. Vogel, A multidirectional Dirichlet problem, J. Geom. Anal., 13 (2003), pp. 495--520.
44.
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Stuttgart, 1996.
45.
L. Zhu, S. Giani, P. Houston, and D. Schötzau, Energy norm a posteriori error estimation for $hp$-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions, Math. Models Methods Appl. Sci., 21 (2011), pp. 267--306.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2159 - 2181
ISSN (online): 1095-7170

History

Submitted: 31 August 2011
Accepted: 4 June 2012
Published online: 4 September 2012

Keywords

  1. pointwise a posteriori error estimate
  2. discontinuous Galerkin method
  3. elliptic problem
  4. adaptive algorithm

MSC codes

  1. 65N30
  2. 65N15
  3. 65N50

Authors

Affiliations

Emmanuil H. Georgoulis

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media