A Quadratic $C^0$ Interior Penalty Method for Linear Fourth Order Boundary Value Problems with Boundary Conditions of the Cahn--Hilliard Type

Abstract

We develop a quadratic $C^0$ interior penalty method for linear fourth order boundary value problems with essential and natural boundary conditions of the Cahn--Hilliard type. Both a priori and a posteriori error estimates are derived. The performance of the method is illustrated by numerical experiments. (A corrected PDF is attached.)

Keywords

  1. $C^0$ interior penalty method
  2. discontinuous Galerkin method
  3. fourth order
  4. essential and natural boundary conditions
  5. a priori error analysis
  6. a posteriori error analysis
  7. adaptive meshes
  8. Cahn--Hilliard

MSC codes

  1. 65N30, 65N15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley-Interscience, New York, 2000.
2.
I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp., 35 (1980), pp. 1039--1062.
3.
G. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), pp. 45--59.
4.
J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn--Hilliard equation with concentration dependent mobility, Math. Comp., 68 (1999), pp. 487--517.
5.
J. W. Barrett, J. F. Blowey, and H. Garcke, On fully practical finite element approximations of degenerate Cahn--Hilliard systems, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 713--748.
6.
L. Beira͂o da Veiga, J. Niiranen, and R. Stenberg, \newblockA posteriori error estimates for the Morley plate bending element, Numer. Math., 106 (2007), pp. 165--179.
7.
A. Berger, R. Scott, and G. Strang, \newblockApproximate boundary conditions in the finite element method, in Symposia Mathematica, Vol. X $($Convegno di Analisi Numerica, INDAM, Rome, 1972$)$, Academic Press, London, 1972, pp. 295--313.
8.
H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci., 2 (1980), pp. 556--581.
9.
J. H. Bramble and R. Falk, Two mixed finite element methods for the simply supported plate problem, R.A.I.R.O. Anal. Numer., 17 (1983), pp. 337--384.
10.
J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., 7 (1970), pp. 113--124.
11.
S. C. Brenner, $C^0$ Interior penalty methods, in Frontiers in Numerical Analysis-Durham 2010, Lect. Notes Comput. Sci. Eng., J. Blowey and M. Jensen, editors, Springer-Verlag, Berlin, Heidelberg, 2012, 85, pp. 79--147.
12.
S. C. Brenner, T. Gudi, and L.-Y. Sung, An a posteriori error estimator for a quadratic ${C^0}$ interior penalty method for the biharmonic problem, IMA J. Numer. Anal., 30 (2010), pp. 777--798.
13.
S. C. Brenner, M. Neilan, and L.-Y. Sung, Isoparametric ${C^0}$ interior penalty methods for plate bending problems on smooth domains, Calcolo, 49 (2012), pp. 1--33
14.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer-Verlag, New York, 2008.
15.
S. C. Brenner and L.-Y. Sung, $C^0$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22/23 (2005), pp. 83--118.
16.
S. C. Brenner and L.-Y. Sung, Multigrid algorithms for $C\sp 0$ interior penalty methods, SIAM J. Numer. Anal., 44 (2006), pp. 199--223.
17.
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system-I: Interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258--267.
18.
Z. Cai, X. Ye, and S. Zhang, Discontinuous Galerkin finite element methods for interface problems: A priori and a posteriori error estimations, SIAM J. Numer. Anal., 49 (2011), pp. 1761--1787.
19.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North--Holland, Amsterdam, 1978.
20.
M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn--Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), pp. 39--65.
21.
M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Math. 1341, Springer-Verlag, Berlin, Heidelberg, 1988.
22.
B. Dong and C.-W. Shu, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems, SIAM J. Numer. Anal., 47 (2009), pp. 3240--3268.
23.
W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106--1124.
24.
Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28 (1991), pp. 1310--1322.
25.
C. M. Elliott and D. A. French, Numerical studies of the Cahn--Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), pp. 97--128.
26.
C. M. Elliott and D. A. French, A nonconforming finite-element method for the two-dimensional Cahn--Hilliard equation, SIAM J. Numer. Anal., 26 (1989), pp. 884--903.
27.
C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the Cahn--Hilliard equation, Numer. Math., 54 (1989), pp. 575--590.
28.
C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn--Hilliard equation, Math. Comp., 58 (1992), pp. 603--630, S33--S36.
29.
G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 3669--3750.
30.
X. Feng and O. A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn--Hilliard equation of phase transition, Math. Comp., 76 (2007), pp. 1093--1117 (electronic).
31.
X. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn--Hilliard equation, Numer. Math., 99 (2004), pp. 47--84.
32.
P. Grisvard, Elliptic Problems in Non Smooth Domains, Pitman, Boston, 1985.
33.
T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp., 79 (2010), pp. 2169--2189.
34.
J. Hu and Z. Shi, A new a posteriori error estimate for the Morley element, Numer. Math., 112 (2009), pp. 25--40.
35.
D. Kay, V. Styles, and E. Süli, Discontinuous Galerkin finite element approximation of the Cahn--Hilliard equation with convection, SIAM J. Numer. Anal., 47 (2009), pp. 2660--2685.
36.
P. Monk, A mixed finite element method for the biharmonic equation, SIAM J. Numer. Anal., 24 (1987), pp. 737--749.
37.
P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), pp. 466--488.
38.
I. Mozolevski and E. Süli, A priori error analysis for the $hp$-version of the discontinuous Galerkin finite element method for the biharmonic equation, Comput. Methods Appl. Math., 3 (2003), pp. 596--607.
39.
S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter, Berlin, New York, 1994.
40.
J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.
41.
E. Süli and I. Mozolevski, $hp$\it-version interior penalty DGFEMs for the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1851--1863.
42.
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, 1995.
43.
G. N. Wells, E. Kuhl, and K. Garikipati, A discontinuous Galerkin method for the Cahn--Hilliard equation, J. Comput. Phys., 218 (2006), pp. 860--877.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2088 - 2110
ISSN (online): 1095-7170

History

Submitted: 9 September 2011
Accepted: 31 May 2012
Published online: 21 August 2012

Keywords

  1. $C^0$ interior penalty method
  2. discontinuous Galerkin method
  3. fourth order
  4. essential and natural boundary conditions
  5. a priori error analysis
  6. a posteriori error analysis
  7. adaptive meshes
  8. Cahn--Hilliard

MSC codes

  1. 65N30, 65N15

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.