An Organizing Center in a Planar Model of Neuronal Excitability

This paper studies the excitability properties of a generalized FitzHugh--Nagumo model. The model differs from the classical FitzHugh--Nagumo model in that it accounts for the effect of cooperative gating variables such as activation of calcium currents. Excitability is explored by unfolding a pitchfork bifurcation that is shown to organize five different types of excitability. In addition to the three classical types of neuronal excitability, two novel types are described and distinctly associated to the presence of cooperative variables.

  • 1.  J. R. Clay D. Paydarfar and  D. B. Forger , A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons , J. Roy. Soc. Interface , 5 ( 2008 ), pp. 1421 -- 1428 . CrossrefISIGoogle Scholar

  • 2.  A. Destexhe D. Contreras M. Steriade T. J. Sejnowski and  J. R. Huguenard , In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , J. Neurosci. , 16 ( 1996 ), pp. 169 -- 185 . CrossrefISIGoogle Scholar

  • 3.  G. Drion A. Franci V. Seutin and  R. Sepulchre , A novel phase portrait for neuronal excitability , PLoS ONE , 7 ( 2012 ), e41806 . CrossrefISIGoogle Scholar

  • 4.  G. B. Ermentrout and  D. H. Terman , Mathematical Foundations of Neuroscience , Interdisciplinary Applied Mathematics 35 , Springer , New York , 2010 . Google Scholar

  • 5.  N. Fenichel , Geometric singular perturbation theory , J. Differential Equations , 31 ( 1979 ), pp. 53 -- 98 . CrossrefISIGoogle Scholar

  • 6.  R . FitzHugh, Impulses and physiological states in theoretical models of nerve membrane , Biophys. J. , 1 ( 1961 ), pp. 445 -- 466 . CrossrefISIGoogle Scholar

  • 7.  Y. Gai B. Doiron V. Kotak and  J. Rinzel , Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current , J. Neurophysiol. , 102 ( 2009 ), pp. 3447 -- 3460 . CrossrefISIGoogle Scholar

  • 8.  A. A. Grace and  B. S. Bunney , The control of firing pattern in nigral dopamine neurons: Burst firing , J. Neurosci. , 4 ( 1984 ), pp. 2877 -- 2890 . CrossrefISIGoogle Scholar

  • 9.  C. M. Gray and  D. A. McCormick , Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex , Science , 274 ( 1996 ), pp. 109 -- 113 . CrossrefISIGoogle Scholar

  • 10.  R. Haberman , Slowly varying jump and transition phenomena associated with algebraic bifurcation problems , SIAM J. Appl. Math. , 37 ( 1979 ), pp. 69 -- 106 . LinkISIGoogle Scholar

  • 11.  N. E. Hallworth C. J. Wilson and  M. D. Bevan , Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro , J. Neurosci. , 23 ( 2003 ), pp. 7525 -- 7542 . ISIGoogle Scholar

  • 12.  P. Heyward M. Ennis A. Keller and  M. T. Shipley , Membrane bistability in olfactory bulb mitral cells , J. Neurosci. , 21 ( 2001 ), pp. 5311 -- 5320 . CrossrefISIGoogle Scholar

  • 13.  A. L. Hodgkin , The local electric changes associated with repetitive action in a non-medullated axon , J. Physiol. , 107 ( 1948 ), pp. 165 -- 181 . CrossrefISIGoogle Scholar

  • 14.  J. R. Huguenard and  D. A. Prince , A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus , J. Neurosci. , 12 ( 1992 ), pp. 3804 -- 3817 . CrossrefISIGoogle Scholar

  • 15.  E. M. Izhikevich , Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , MIT Press , Cambridge, MA , 2007 . Google Scholar

  • 16.  S. W. Johnson V. Seutin and  R. A. North , Burst firing in dopamine neurons induced by N-methyl-D-aspartate: Role of electrogenic sodium pump , Science , 258 ( 1992 ), pp. 665 -- 667 . CrossrefISIGoogle Scholar

  • 17.  C. K. R. Jones , Geometric singular perturbation theory , in Dynamical Systems , Lecture Notes in Math. 1609 , Springer , Berlin , 1995 , pp. 44 -- 120 . Google Scholar

  • 18.  M. Krupa and  P. Szmolyan , Extending geometric singular perturbation theory to nonhyperbolic points---fold and canard points in two dimensions , SIAM J. Math. Anal. , 33 ( 2001 ), pp. 286 -- 314 . LinkISIGoogle Scholar

  • 19.  M. Krupa and  P. Szmolyan , Extending slow manifolds near transcritical and pitchfork singularities , Nonlinearity , 14 ( 2001 ), pp. 1473 -- 1491 . CrossrefISIGoogle Scholar

  • 20.  M. Krupa and  P. Szmolyan , Relaxation oscillation and canard explosion , J. Differential Equations , 174 ( 2001 ), pp. 312 -- 368 . CrossrefISIGoogle Scholar

  • 21.  N. R. Lebovitz and  R. J. Schaar , Exchange of stabilities in autonomous systems , Stud. Appl. Math. , 54 ( 1975 ), pp. 229 -- 260 . CrossrefISIGoogle Scholar

  • 22.  W. Liu , Exchange lemmas for singular perturbation problems with certain turning points , J. Differential Equations , 167 ( 2000 ), pp. 134 -- 180 . CrossrefISIGoogle Scholar

  • 23.  D. A. McCormick and  T. Bal , Sleep and arousal: Thalamocortical mechanisms , Ann. Rev. Neurosci. , 20 ( 1997 ), pp. 185 -- 215 . CrossrefISIGoogle Scholar

  • 24.  D. A. McCormick and  J. R. Huguenard , A model of the electrophysiological properties of thalamocortical relay neurons , J. Neurophysiol. , 68 ( 1992 ), pp. 1384 -- 1400 . CrossrefISIGoogle Scholar

  • 25.  C. Messina and  R. Cotrufo , Different excitability of type 1 and type 2 alpha-motoneurones: The recruitment curve of H- and M-responses in slow and fast muscles of rabbits , J. Neurological Sci. , 28 ( 1976 ), pp. 57 -- 63 . CrossrefISIGoogle Scholar

  • 26.  C. Morris and  H. Lecar , Voltage oscillations in the barnacle giant muscle fiber , Biophys. J. , 35 ( 1981 ), pp. 193 -- 213 . CrossrefISIGoogle Scholar

  • 27.  R. E. Plant and  M. Kim , Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations , Biophys. J. , 16 ( 1976 ), pp. 227 -- 244 . CrossrefISIGoogle Scholar

  • 28.  L. S. Pontryagin , Asymptotic behavior of solutions of systems of differential equations with a small parameter in the derivatives of highest order , Izv. Ross. Akad. Nauk Ser. Mat. , 21 ( 1957 ), pp. 605 -- 626 . Google Scholar

  • 29.  J. Rinzel and  Excitation : Insights from simplified membrane models , in Fed. Proc. , Vol. 44 , 1985 , pp. 2944 -- 2946 . Google Scholar

  • 30.  J. Rinzel and  G. B. Ermentrout , Analysis of neural excitability and oscillations , in Methods in Neuronal Modeling , MIT Press , Cambridge, MA , 1989 , pp. 135 -- 169 . Google Scholar

  • 31.  S. Sessley R. J. Butera and  Evidence “type I” excitability in molluscan neurons, in Engineering in Medicine and Biology , Proceedings of the 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society (EMBS/BMES Conference) , Vol. 3 , IEEE, Washington, DC , 2002 , pp. 1966 -- 1967 . Google Scholar

  • 32.  R. Seydel , Practical Bifurcation and Stability Analysis , 3 rd ed., Interdisciplinary Applied Mathematics 5, Springer-Verlag , New York, 2010 . Google Scholar

  • 33.  T. Tateno A. Harsch and  H. P. . Robinson, Threshold firing frequency--current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics , J. Neurophysiol. , 92 ( 2004 ), pp. 2283 -- 2294 . CrossrefISIGoogle Scholar

  • 34.  R. D. Traub R. K. Wong R. Miles and  H. Michelson , A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances , J. Neurophysiol. , 66 ( 1991 ), pp. 635 -- 650 . CrossrefISIGoogle Scholar

  • 35.  M. Wechselberger , Scholarpedia J. , 2 ( 2007 ), p. 1356 . CrossrefGoogle Scholar

  • 36.  C. Wilson , Up and down states , Scholarpedia J. , 3 ( 2008 ), p. 1410 . CrossrefGoogle Scholar

  • 37.  C. J. Wilson and  P. M. Groves , Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , Brain Res. , 220 ( 1981 ), pp. 67 -- 80 . CrossrefISIGoogle Scholar

  • 38.  X. J. Zhan C. L. Cox J. Rinzel and  S. M. Sherman , Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus , J. Neurophysiol. , 81 ( 1999 ), pp. 2360 -- 2373 . CrossrefISIGoogle Scholar