Abstract

The $H_\infty$ norm of a transfer matrix function for a control system is the reciprocal of the largest value of $\varepsilon$ such that the associated $\varepsilon$-spectral value set is contained in the stability region for the dynamical system (the left half-plane in the continuous-time case and the unit disk in the discrete-time case). After deriving some fundamental properties of spectral value sets, particularly the intricate relationship between the singular vectors of the transfer matrix and the eigenvectors of the corresponding perturbed system matrix, we extend an algorithm recently introduced by Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166--1192] for approximating the maximal real part or modulus of points in a matrix pseudospectrum to spectral value sets, characterizing its fixed points. We then introduce a Newton-bisection method to approximate the $H_\infty$ norm, for which each step requires optimization of the real part or the modulus over an $\varepsilon$-spectral value set. Although the algorithm is guaranteed only to find lower bounds on the $H_\infty$ norm, it typically finds good approximations in cases where we can test this. It is much faster than the standard Boyd--Balakrishnan--Bruinsma--Steinbuch algorithm to compute the $H_\infty$ norm when the system matrices are large and sparse and the number of inputs and outputs is small. The main work required by the algorithm is the computation of the spectral abscissa or radius of a sequence of matrices that are rank-one perturbations of a sparse matrix.

Keywords

  1. $H_\infty$ norm
  2. large and sparse systems
  3. spectral value sets
  4. spectral value set abscissa
  5. spectral value set radius
  6. Newton-bisection method
  7. pseudospectra
  8. transfer matrix
  9. stability radius
  10. linear dynamical systems

MSC codes

  1. 93B40
  2. 93B25
  3. 93B60
  4. 93C05
  5. 93C80
  6. 65F15
  7. 15A18
  8. 90C06
  9. 93C55
  10. 65F50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Alam, S. Bora, R. Byers, and M. L. Overton, Characterization and construction of the nearest defective matrix via coalescence of pseudospectral components, Linear Algebra Appl., 435 (2011), pp. 494--513.
2.
P. J. Antsaklis and A. N. Michel, A Linear Systems Primer, Birkhäuser Boston, Boston, MA, 2007.
3.
P. Benner and M. Voigt, A Structured Pseudospectral Method for $h_\infty$-Norm Computation of Large-Scale Descriptor Systems, Tech. report MPIMD/12-10. Max Planck Institute, Magdeburg, 2012.
4.
S. Boyd and V. Balakrishnan, A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its ${\bf L}\sb \infty$-norm, Systems Control Lett., 15 (1990), pp. 1--7.
5.
N. A. Bruinsma and M. Steinbuch, A fast algorithm to compute the $H^{\infty}$-norm of a transfer function matrix, Systems Control Lett., 14 (1990), pp. 287--293.
6.
J. V. Burke, A. S. Lewis, and M. L. Overton, Robust stability and a criss-cross algorithm for pseudospectra, IMA J. Numer. Anal., 23 (2003), pp. 359--375.
7.
J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, HIFOO: a MATLAB package for fixed-order controller design and $H_\infty$ optimization, in Proceedings of the Fifth IFAC Symposium on Robust Control Design, Toulouse, France, 2006.
8.
J. V. Burke, A. S. Lewis, and M. L. Overton, A nonsmooth, nonconvex optimization approach to robust stabilization by static output feedback and low-order controllers, in Proceedings of the Fourth IFAC Symposium on Robust Control Design, Milan, Italy, 2003.
9.
R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 875--881.
10.
M. A. Freitag and A. Spence, A Newton-based method for the calculation of the distance to instability, Linear Algebra Appl., 435 (2011), pp. 3189--3205.
11.
M. Freitag, private communication, 2012, University of Bath.
12.
Y. Genin, P. Van Dooren, and V. Vermaut, Convergence of the calculation of $H_\infty$-norms and related questions, in Proceedings of MTNS, 1998, pp. 429--432.
13.
G. H. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983.
14.
N. Guglielmi and M.L. Overton, Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166--1192.
15.
M. Gürbüzbalaban and M.L. Overton, Some regularity results for the pseudospectral abscissa and pseudospectral radius of a matrix, SIAM J. Optim., 22 (2012), pp. 281--285.
16.
N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl., 103 (1988), pp. 103--118.
17.
D. Hinrichsen and A.J. Pritchard, Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness, Springer, Berlin, 2005.
18.
D. Hinrichsen and N. K. Son, The complex stability radius of discrete-time systems and symplectic pencils, in Proceedings of the 28th IEEE Conference on Decision and Control, vol. 1--3, Tampa, FL, 1989, pp. 2265--2270.
19.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1990.
20.
M. Karow, Geometry of Spectral Value Sets, Ph.D. thesis, Universität Bremen, Germany, 2003.
21.
D. Kressner and B. Vandereycken, Subspace Methods for Computing the Pseudospectral Abscissa and the Stability Radius, Tech. report, MATHICSE 13.2012, École Polytechnique Fédérale de Lausanne, Switzerland, 2012.
22.
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ. Tools SIAM, Philadelphia, PA, 1997.
23.
F. Leibfritz, Compleib: Constrained Matrix Optimization Problem Library, http://www. compleib.de (2006).
24.
Matlab Control System Toolbox, Release 2012b, http://www.mathworks.com.
25.
A. P. Popov, H. Werner, and M. Millstone, Fixed-structure discrete-time $H_\infty$ controller synthesis with HIFOO, in 49th IEEE Conference on Decision and Control, 2010, pp. 3152 --3155.
26.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, 1986.
27.
L. N. Trefethen and M. Embree, Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
28.
P. Van Dooren, 2012. Private communication.
29.
C. Van Loan, How near is a stable matrix to an unstable matrix?, in Linear algebra and Its Role in Systems Theory (Brunswick, Maine, 1984), Contemp. Math. 47, AMS, Providence, RI, 1985, pp. 465--478.
30.
T. G. Wright, Eigtool: A Graphical Tool for Nonsymmetric Eigen-Problems, http://www.comlab.ox.ac.uk/pseudospectra/eigtool (2002).
31.
K. Zhou, K. Glover, and J. Doyle, Robust and Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1995.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 709 - 737
ISSN (online): 1095-7162

History

Submitted: 2 May 2012
Accepted: 25 January 2013
Published online: 13 June 2013

Keywords

  1. $H_\infty$ norm
  2. large and sparse systems
  3. spectral value sets
  4. spectral value set abscissa
  5. spectral value set radius
  6. Newton-bisection method
  7. pseudospectra
  8. transfer matrix
  9. stability radius
  10. linear dynamical systems

MSC codes

  1. 93B40
  2. 93B25
  3. 93B60
  4. 93C05
  5. 93C80
  6. 65F15
  7. 15A18
  8. 90C06
  9. 93C55
  10. 65F50

Authors

Affiliations

Mert Gürbüzbalaban

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media