Free access

Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen--Loève Expansion

Abstract

We consider parametric partial differential equations (PPDEs) with stochastic influences, e.g., in terms of random coefficients. Using standard discretizations such as finite elements, this often amounts to high-dimensional problems. In a many-query context, the PPDE has to be solved for various instances of the deterministic parameter as well as the stochastic influences. To decrease computational complexity, we derive a reduced basis method (RBM), where the uncertainty in the coefficients is modeled using Karhunen--Loève (KL) expansions. We restrict ourselves to linear coercive problems with linear and quadratic output functionals. A new a posteriori error analysis is presented that generalizes and extends some of the results by Boyaval et al. [Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3187--3206]. The additional KL-truncation error is analyzed for the state, output functionals, and also for statistical outputs such as mean and variance. Error estimates for quadratic outputs are obtained using additional nonstandard dual problems. Numerical experiments for a two-dimensional porous medium demonstrate the effectivity of this approach.

Keywords

  1. reduced basis methods
  2. stochastic partial differential equations
  3. Karhunen--Loève decomposition
  4. error estimators

MSC codes

  1. 35R60
  2. 65M15
  3. 65M60

Formats available

You can view the full content in the following formats:

References

1.
I. M. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800--825.
2.
M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An `empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 667--672.
3.
S. Boyaval, A fast Monte Carlo method with a reduced basis of control variates applied to uncertainty propagation and Bayesian estimation, Comput. Methods Appl. Mech. Engrg., 241--244 (2012), pp. 190--205.
4.
S. Boyaval, C. Le Bris, Y. Maday, N. C. Nguyen, and A. T. Patera, A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3187--3206.
5.
P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205--228.
6.
R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.
7.
M. A. Grepl and A. T. Patera, A posteriori error bounds for reduced-bias approximations of parametrized parabolic partial differential equations, M2AN Math. Model. Numer. Anal., 39 (2005), pp. 157--181.
8.
H. Harbrecht, A finite element method for elliptic problems with stochastic input data, Appl. Numer. Math., 60 (2010), pp. 227--244.
9.
D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for stress intensity factors, Internat. J. Numer. Methods Engrg., 72 (2007), pp. 1219--1259.
10.
D. B. P. Huynh, J. Peraire, A. T. Patera, and G. R. Liu, Real-time reliable prediction of linear-elastic mode-i stress intensity factors for failure analysis, in Proceedings of the 6th Singapore-MIT Alliance Annual Symposium, Cambridge, MA, 2006.
11.
D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 473--478.
12.
K. Karhunen, \emÜber lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1947 (37) (1947), 79.
13.
M. Loève, Probability Theory. II, 4th ed., Grad. Texts in Math. 46, Springer-Verlag, New York, 1978.
14.
H. G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 1295--1331.
15.
A. T. Patera and G. Rozza, Reduced Basis Approximation and A-Posteriori Error Estimation for Parametrized Partial Differential Equations, Version \textup1.0, MIT, Cambridge, MA, 2006.
16.
G. Rozza, D. B. P. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Methods Eng., 15 (2008), pp. 229--275.
17.
L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quart. Appl. Math., 45 (1987), pp. 561--571.
18.
T. Tonn, Reduced-Basis Method (RBM) for Non-affine Elliptic Parametrized PDEs (Motivated by Optimization in Hydromechanics), Ph.D. thesis, Ulm University, Ulm, Germany, 2011.
19.
K. Urban and B. Wieland, Reduced basis methods for quadratically nonlinear partial differential equations with stochastic influences, in CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, 2012, J. Eberhardsteiner, H. J. Böhm, and F. G. Rammerstorfer, eds., Vienna University of Technology, Austria, 2012.
20.
K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds, Internat. J. Numer. Methods Fluids, 47 (2005), pp. 773--788.
21.
K. Veroy, C. Prud'homme, D. V. Rovas, and A. T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, 2003, AIAA paper 2003-3847.
22.
N. Wiener, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897--936.
23.
D. Xiu and G. E. Karniadakis, The Wiener--Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619--644.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 79 - 105
ISSN (online): 2166-2525

History

Submitted: 10 May 2012
Accepted: 4 February 2013
Published online: 27 March 2013

Keywords

  1. reduced basis methods
  2. stochastic partial differential equations
  3. Karhunen--Loève decomposition
  4. error estimators

MSC codes

  1. 35R60
  2. 65M15
  3. 65M60

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media