Abstract

It has long been known that the method of time-delay embedding can be used to reconstruct nonlinear dynamics from time series data. A less-appreciated fact is that the induced geometry of time-delay coordinates increasingly biases the reconstruction toward the stable directions as delays are added. This bias can be exploited, using the diffusion maps approach to dimension reduction, to extract dynamics on desired time scales from high-dimensional observed data. We demonstrate the technique on a wide range of examples, including data generated by a model of meandering spiral waves and video recordings of a liquid-crystal experiment.

Keywords

  1. dimension reduction
  2. time-scale separation
  3. delay coordinates
  4. diffusion map

MSC codes

  1. 37M10
  2. 37L30
  3. 62G07

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (88183_01.mov)
File (88183_02.mov)
File (88183_03.mov)
File (88183_04.mov)
File (88183_05.mov)
File (88183_06.mov)
File (88183_07.mov)
File (88183_08.mov)

References

1.
D. Aeyels, Generic observability of differentiable systems, SIAM J. Control Optim., 19 (1981), pp. 595--603.
2.
L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998.
3.
D. Barkley, Spiral meandering, in Chemical Waves and Patterns, R. Kapral and K. Showalter, eds., Springer-Verlag, New York, 1995, pp. 163--190.
4.
D. Barkley and I. G. Kevrekidis, A dynamical systems approach to spiral-wave dynamics, Chaos, 4 (1994), pp. 453--460.
5.
D. S. Broomhead and G. P. King, Extracting qualitative dynamics from experimental data, Phys. D, 20 (1986), pp. 217--236.
6.
R. Coifman, R. Erban, A. Singer, and I. Kevrekidis, Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 16090--16095.
7.
R. Coifman and S. Lafon, Diffusion maps, Appl. Comput. Harmonic Anal., 21 (2006), pp. 5--30.
8.
R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler, Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems, Multiscale Model. Simul., 7 (2008), pp. 842--864.
9.
R. Coifman, S. Lafon, B. Nadler, and I. Kevrekidis, Diffusion maps, spectral clustering and reaction coordinates of dynamical systems, Appl. Comput. Harmonic Anal., 21 (2006), pp. 113--127.
10.
R. Coifman and M. Maggioni, Diffusion wavelets, Appl. Comput. Harmonic Anal., 21 (2006), pp. 53--94.
11.
G. Dangelmayr, G. Acharya, J. Gleeson, I. Oprea, and J. Ladd, Diagnosis of spatiotemporal chaos in wave-envelopes of a nematic electroconvection pattern, Phys. Rev. E, 79 (2009), pp. 46215--46235.
12.
M. Dennin, D. S. Cannell, and G. Ahlers, Patterns of electroconvection in a nematic liquid crystal, Phys. Rev. E, 57 (1998), pp. 638--649.
13.
M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga, and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Rev., 54 (2012), pp. 211--288.
14.
J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), pp. 617--656.
15.
D. Egolf, I. Melnikov, W. Pesche, and R. Ecke, Mechanisms of extensive spatiotemporal chaos in Raleigh-Bénard convection, Nature, 404 (2000), pp. 733--736.
16.
V. Garcia, E. Debreuve, and M. Barlaud, Fast k-nearest neighbor search using GPU, in Proceedings of the CVPR Workshop on Computer Vision on GPU, Anchorage, AK, 2008.
17.
C. W. Gear, T. J. Kaper, I. G. Kevrekidis, and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 711--732.
18.
P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, UK, 1993.
19.
D. Giannakis and A. J. Majda, Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 2222--2227.
20.
J. Jost, Riemannian Geometry and Geometric Analysis, Springer-Verlag, Berlin, 2002.
21.
J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction, Springer-Verlag, New York, 2007.
22.
V. I. Oseledets, A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19 (1968), pp. 197--231.
23.
N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a time series, Phys. Rev. Lett., 45 (1980), pp. 712--716.
24.
Y. B. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR Izvestia, 10 (1976), pp. 1261--1305.
25.
T. Sauer, Time series prediction by using delay coordinate embedding, in Time Series Prediction: Forecasting the Future and Understanding the Past, A. S. Weigend and N. A. Gershenfeld, eds., Addison-Wesley, Harlow, UK, 1994, pp. 175--193.
26.
T. Sauer, J. A. Yorke, and M. Casdagli, Embedology, J. Statist. Phys., 65 (1991), pp. 579--616.
27.
A. Singer, From graph to manifold Laplacian: The convergence rate, Appl. Comput. Harmonic Anal., 21 (2006), pp. 128--134.
28.
A. Singer, R. Erban, I. G. Kevrekidis, and R. Coifman, Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 16090--16095.
29.
A. Singer and H.-T. Wu, Vector diffusion maps and the connection Laplacian, Comm. Pure Appl. Math., 65 (2012), pp. 1067--1144.
30.
J. Stark, Delay embeddings for forced systems. I. Deterministic forcing, J. Nonlinear Sci., 9 (1999), pp. 255--332.
31.
J. Stark, D. S. Broomhead, M. E. Davies, and J. Huke, Delay embeddings for forced systems. II. Stochastic forcing, J. Nonlinear Sci., 13 (2003), pp. 519--577.
32.
F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, D. Rand and L.-S. Young, eds., Lecture Notes in Math. 898, Springer, Berlin, Heidelberg, 1981, pp. 366--381.
33.
J. Tenenbaum, V. Silva, and J. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319--2324.
34.
T. Toh-Katona, J. R. Cressman, W. Golburg, and J. Gleeson, Persistent global power fluctuations near a dynamic transition in electroconvection, Phys. Rev. E, 68 (2003), 103010.
35.
A. Zagaris, H. G. Kaper, and T. J. Kaper, Two perspectives on reduction of ordinary differential equations, Math. Nachr., 278 (2005), pp. 1629--1642.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 618 - 649
ISSN (online): 1536-0040

History

Submitted: 22 June 2012
Accepted: 20 February 2013
Published online: 30 April 2013

Keywords

  1. dimension reduction
  2. time-scale separation
  3. delay coordinates
  4. diffusion map

MSC codes

  1. 37M10
  2. 37L30
  3. 62G07

Authors

Affiliations

Z. Gregurić-Ferenček

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media