Abstract

A book with $k$ pages consists of a straight line (the spine) and $k$ half-planes (the pages), such that the boundary of each page is the spine. If a graph is drawn on a book with $k$ pages in such a way that the vertices lie on the spine, and each edge is contained in a page, the result is a k-page book drawing (or simply a $k$-page drawing). The $k$-page crossing number $\nu_k(G)$ of a graph $G$ is the minimum number of crossings in a $k$-page drawing of $G$. In this paper we investigate the $k$-page crossing numbers of complete graphs. We use semidefinite programming techniques to give improved lower bounds on $\nu_k(K_n)$ for various values of $k$. We also use a maximum satisfiability reformulation to obtain a computer-aided calculation of the exact value of $\nu_k(K_n)$ for several values of $k$ and $n$. Finally, we investigate the best construction known for drawing $K_n$ in $k$ pages, calculate the resulting number of crossings, and discuss this upper bound in light of the new results reported in this paper.

Keywords

  1. $2$-page crossing number
  2. book crossing number
  3. semidefinite programming
  4. maximum $k$-cut
  5. Frieze--Jerrum maximum-$k$-cut bound
  6. maximum satisfiability problem

MSC codes

  1. 90C22
  2. 90C25
  3. 05C10
  4. 05C62
  5. 57M15
  6. 68R10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, The $2$-page crossing number of $K_n$, Proceedings of the 28th ACM Symposium on Computational Geometry (SoCG'12), Chapel Hill, NC, USA, 2012, pp. 397--403.
2.
F. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B, 27 (1979), pp. 320--331.
3.
J. Blažek and M. Koman, A minimal problem concerning complete plane graphs, in 1964 Theory of Graphs and Its Applications Czechoslovak Academy of Sciences, Prague, 1963, pp. 113--117.
4.
C. Buchheim and L. Zheng, Fixed Linear Crossing Minimization by Reduction to the Maximum Cut Problem, Lecture Notes in Comput. Sci., 4112, 2006, pp. 507--516.
5.
E. Czabarka, O. Sýkora, L. A. Székely, and I. Vrt'o, Biplanar crossing numbers. I. A survey of results and problems, in More Sets, Graphs and Numbers, Bolyai Soc. Math. Stud. 15, Springer, Berlin, 2006, pp. 57--77.
6.
E. Czabarka, O. Sýkora, L. A. Székely, and I. Vrt'o, Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method, Random Structures Algorithms, 33 (2008), pp. 480--496.
7.
F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Embedding graphs in books: A layout problem with applications to VLSI design, SIAM J. Algebraic Discrete Methods, 8 (1987), pp. 33--58.
8.
E. Damiani, O. D'Antona, and P. Salemi, An upper bound to the crossing number of the complete graph drawn on the pages of a book, J. Combin. Inform. System Sci., 19 (1994), pp. 75--84.
9.
E. de Klerk, D. V. Pasechnik, and G. Salazar, Improved Lower Bounds on Book Crossing Numbers of Complete Graphs, manuscript, arXiv:1207.5701 [math.CO], 2012.
10.
E. de Klerk, D.V. Pasechnik, and J.P Warners, On approximate graph colouring and MAX-$k$-CUT algorithms based on the $\vartheta$-function, J. Comb. Optim., 8 (2004), pp. 267--294.
11.
E. de Klerk and D. V. Pasechnik, Improved lower bounds for the 2-page crossing numbers of $K_{m,n}$ and $K_n$ via semidefinite programming, SIAM J. Optim., 22 (2012), pp. 581--595.
12.
H. Enomoto, T. Nakamigawa, and K. Ota, On the pagenumber of complete bipartite graphs, J. Combin. Theory Ser. B, 71 (1997), pp. 111--120.
13.
K. Gatermann and P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192 (2004), pp. 95--128.
14.
M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115--1145.
15.
R. K. Guy, T. Jenkyns, and J. Schaer, The toroidal crossing number of the complete graph, J. Combin. Theory, 4 (1968), pp. 376--390.
16.
F. Harary and A. Hill, On the number of crossings in a complete graph, Proc. Edinb. Math. Soc. (2), 13 (1962/1963), pp. 333--338.
17.
H. Harborth, Special numbers of crossings for complete graphs, Discrete Math., 244 (2002), pp. 95--102.
18.
H. He, A. Sǎlǎgean, and E. Mäkinen, One- and two-page crossing numbers for some types of graphs, Int. J. Comput. Math., 87 (2010), pp. 1667--1679.
19.
H. He, O. Sýkora, and E. Mäkinen, Genetic algorithms for the 2-page drawing problem of graphs, J. Heuristics, 13 (2007), pp. 77--93.
20.
H. He, O. Sýkora, and I. Vrt'o, Minimisation Heuristics for 2-page Drawings, Electron. Notes Discrete Math., 22 (2005), pp. 527--534.
21.
P. C. Kainen, An introduction to topological graph theory, in Graphs and Combinatorics, R. Bari and F. Harary, eds., Springer, New York, 1974, pp. 76--108.
22.
A. Kügel, Improved exact solver for the weighted Max-SAT problem, in Proceedings of POS-10. Pragmatics of SAT (Daniel Le Berre, ed.), EasyChair Proceedings in Computing 8, 2012, pp. 15--27.
23.
J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of the CACSD Conference, Taipei, Taiwan, 2004; also available online from http://users.isy.liu.se/johanl/yalmip/.
24.
S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa, On the NP-completeness of a computer network layout problem, in Proceedings of the 1987 IEEE International Symposium on Circuits and Systems, IEEE Press, New York, 1987, pp. 292--295.
25.
S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa, Crossing minimization in linear embeddings of graphs, IEEE Trans. Comput., 39 (1990), pp. 124--127.
26.
D. J. Muder, M. L. Weaver, and D. B. West, Pagenumber of complete bipartite graphs, J. Graph Theory, 12 (1988), pp. 469--489.
27.
S. Pan and R. B. Richter, The crossing number of $K_{11}$ is $100$, J. Graph Theory, 56 (2007), pp. 128--134.
28.
F. Rendl, G. Rinaldi, and A. Wiegele, Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations, Math. Program., 121 (2010), pp. 307--335.
29.
R. B. Richter and C. Thomassen, Relations between crossing numbers of complete and complete bipartite graphs, Amer. Math. Monthly, 104 (1997), pp. 131--137.
30.
W. Stein et al., Sage: Open Source Mathematics Software, version 5.0, The Sage Group, http://www.sagemath.org 2012.
31.
E. R. Scheinerman and H. S. Wilf, The rectilinear crossing number of a complete graph and Sylvester's “four point problem,'' Amer. Math. Monthly, 101 (1994), pp. 939--943.
32.
F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrt'o, The book crossing number of a graph, J. Graph Theory 21 (1996), pp. 413--424.
33.
F. Shahrokhi, O. Sykora, L. A. Székely, and I. Vrt'o, On k-planar crossing numbers, Discrete Appl. Math., 155 (2007), pp. 1106--1115.
34.
R. Stanley, Enumerative Combinatorics, vol. 1, 2nd ed., Cambridge University Press, New York, 2011; also available online from http://www-math.mit.edu/ rstan/ec/ec1/.
35.
K. C. Toh, M. J. Todd, and R. H. Tutuncu, SDPT3---A MATLAB software package for semidefinite programming, Optim. Methods Softw., 11 (1999), pp. 545--581.
36.
R. H. Tutuncu, K. C. Toh, and M. J. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Math. Program. Ser. B, 95 (2003), pp. 189--217.
37.
I. Vrt'o, Two special crossing number problems for complete graphs, in Abstracts of the 6th Slovenian International Conference on Graph Theory, Bled'07.
38.
M. Yannakakis, Embedding planar graphs in four pages, J. Comput. System Sci., 38 (1989), pp. 36--67.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 619 - 633
ISSN (online): 1095-7146

History

Submitted: 2 August 2012
Accepted: 15 January 2013
Published online: 4 April 2013

Keywords

  1. $2$-page crossing number
  2. book crossing number
  3. semidefinite programming
  4. maximum $k$-cut
  5. Frieze--Jerrum maximum-$k$-cut bound
  6. maximum satisfiability problem

MSC codes

  1. 90C22
  2. 90C25
  3. 05C10
  4. 05C62
  5. 57M15
  6. 68R10

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media