Abstract

In this paper an optimal control problem is considered, where the control variable lies in a measure space and the state variable fulfills an elliptic equation. This formulation leads to a sparse structure of the optimal control. In this setting we prove a new regularity result for the optimal state and the optimal control. Moreover, a finite element discretization based on [E. Casas, C. Clason, and K. Kunisch, SIAM J. Control Optim., 50 (2012), pp. 1735--1752] is discussed and a priori error estimates are derived, which significantly improve the estimates from that paper. Numerical examples for problems in two and three space dimensions illustrate our results.

Keywords

  1. optimal control
  2. sparsity
  3. finite elements
  4. error estimates

MSC codes

  1. 35J05
  2. 35Q93
  3. 49M25
  4. 49M29
  5. 65N30
  6. 65N15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Y. A. Alkhutov and V. A. Kondrat'ev, Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain, Differ. Uravn., 28 (1992), pp. 806--818, 917.
2.
H. W. Alt, Linear Functional Analysis. An Application Oriented Introduction (in German), 6th ed., Springer, Berlin, 2011.
3.
D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, Berlin, 2001.
4.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Appl. Math. 15, 3rd ed., Springer, New York, 2008.
5.
P. Brunner, C. Clason, M. Freiberger, and H. Scharfetter, A deterministic approach to the adapted optode placement for illumination of highly scattering tissue, Biomed. Opt. Express, 3 (2012), pp. 1732--1743.
6.
E. Casas, $L^2$ estimates for the finite element method for the Dirichlet problem with singular data, Numer. Math., 47 (1985), pp. 627--632.
7.
E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control Optim., 24 (1986), pp. 1309--1318.
8.
E. Casas, C. Clason, and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions, SIAM J. Control Optim., 50 (2012), pp. 1735--1752.
9.
E. Casas, R. Herzog, and G. Wachsmuth, Approximation of sparse controls in semilinear equations by piecewise linear functions, Numer. Math., 122(4) (2012), pp. 645--669.
10.
E. Casas, R. Herzog, and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L$^1$ cost functional, SIAM J. Optim., 22 (2012), pp. 795--820.
11.
C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces, ESAIM Control Optim. Calc. Var., 17 (2011), pp. 243--266.
12.
C. Clason and K. Kunisch, A measure space approach to optimal source placement, Comput. Optim. Appl.,53(1) (2012), pp. 155--171.
13.
J. Frehse and R. Rannacher, Eine ${L}^1$-Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente, in Finite Elemente. Tagungsband des Sonderforschungsbereichs 72, J. Frehse, R. Leis, and R. Schaback, eds., Bonner Math. Schriften 89, University of Bonn, Bonn, 1976, pp. 92--114.
14.
M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), pp. 45--61.
15.
N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972.
16.
N. G. Meyers, An $L^{p}$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa (3), 17 (1963), pp. 189--206.
17.
R. Rannacher, Zur $L^{\infty }$-Konvergenz linearer finiter Elemente beim Dirichlet-Problem, Math. Z., 149 (1976), pp. 69--77.
18.
R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 38 (1982), pp. 437--445.
19.
RoDoBo, A C++ Library for Optimization with Stationary and Nonstationary PDEs with Interface to Gascoigne, http://rodobo.uni-hd.de.
20.
G. Stadler, Elliptic optimal control problems with $L^1$-control cost and applications for the placement of control devices, Comput. Optim. Appl., 44 (2009), pp. 159--181.
21.
M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, MOS-SIAM Ser. Optim., SIAM, Philadelphia, 2011.
22.
G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional, ESAIM Control Optim. Calc. Var., 17 (2011), pp. 858--886.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 2788 - 2808
ISSN (online): 1095-7138

History

Submitted: 24 August 2012
Accepted: 13 May 2013
Published online: 2 July 2013

Keywords

  1. optimal control
  2. sparsity
  3. finite elements
  4. error estimates

MSC codes

  1. 35J05
  2. 35Q93
  3. 49M25
  4. 49M29
  5. 65N30
  6. 65N15

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.