Methods and Algorithms for Scientific Computing

Robust Solution of Singularly Perturbed Problems Using Multigrid Methods

Abstract

We consider the problem of solving linear systems of equations that arise in the numerical solution of singularly perturbed ordinary and partial differential equations of reaction-diffusion type. Standard discretization techniques are not suitable for such problems and, so, specially tailored methods are required, usually involving adapted or fitted meshes that resolve important features such as boundary and/or interior layers. In this study, we consider classical finite difference schemes on the layer adapted meshes of Shishkin and Bakhvalov. We show that standard direct solvers exhibit poor scaling behavior, with respect to the perturbation parameter, when solving the resulting linear systems. We propose and prove optimality of a new block-structured preconditioning approach that is robust for small values of the perturbation parameter, and compares favorably with standard robust multigrid preconditioners for these linear systems. We also derive stopping criteria which ensure that the potential accuracy of the layer-resolving meshes is achieved.

Keywords

  1. boundary-fitted meshes
  2. robust multigrid
  3. preconditioning

MSC codes

  1. 65F10
  2. 65N06
  3. 65N22
  4. 65N55

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter, The multi-grid method for the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 430--454.
2.
A. R. Ansari and A. F. Hegarty, A note on iterative methods for solving singularly perturbed problems using non-monotone methods on Shishkin meshes, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 3673--3687.
3.
I. Babuška and M. Suri, On locking and robustness in the finite element method, SIAM J. Numer. Anal., 29 (1992), pp. 1261--1293.
4.
N. Bakhvalov, Towards optimization of methods for solving boundary value problems in the presence of boundary layers, Zh. Vychisl. Mat. Mat. Fiz., 9 (1969), pp. 841--859 (in Russian).
5.
B. Bergen, G. Wellein, F. Hülsemann, and U. Rüde, Hierarchical hybrid grids: Achieving TERAFLOP performance on large scale finite element simulations, Int. J. Parallel Emergent Distrib. Systems, 22 (2007), pp. 311--329.
6.
J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Convergence estimates for multigrid algorithms without regularity assumptions, Math. Comp., 57 (1991), pp. 23--45.
7.
A. Brandt, Multi--level adaptive techniques (MLAT) for singular--perturbation problems, in Numerical Analysis of Singular Perturbation Problems, P. W. Hemker and J. J. H. Miller, eds., Academic, New York, 1979, pp. 53--142.
8.
W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM, Philadelphia, 2000.
9.
N. M. Chadha and N. Kopteva, A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem, IMA J. Numer. Anal., 31 (2011), pp. 188--211.
10.
D. Chen, S. MacLachlan, and M. Kilmer, Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising, SIAM J. Sci. Comput., 33 (2011), pp. 2972--2994.
11.
Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Software, 35 (2008), pp. 22.
12.
C. Clavero, J. Gracia, and E. O'Riordan, A parameter robust numerical method for a two dimensional reaction-diffusion problem, Math. Comp., 74 (2005), pp. 1743--1758.
13.
T. A. Davis, Direct Methods for Sparse Linear Systems, Fundamentals of Algorithms 2, SIAM, Philadelphia, 2006.
14.
S. Davydycheva, V. Druskin, and T. Habashy, An efficient finite-difference scheme for electromagnetic logging in $3$D anisotropic inhomogeneous media, Geophysics, 68 (2003), pp. 1525--1536.
15.
J. E. Dendy, Black box multigrid, J. Comput. Phys., 48 (1982), pp. 366--386.
16.
V. Druskin and L. Knizhnerman, Gaussian spectral rules for the three-point second differences. I. A two-point positive definite problem in a semi-infinite domain, SIAM J. Numer. Anal., 37 (1999), pp. 403--422.
17.
I. S. Duff, MA$57$ -- a code for the solution of sparse symmetric definite and indefinite systems, ACM Trans. Math. Software, 30 (2004), pp. 118--144.
18.
P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Appl. Math. 16, Chapman & Hall/CRC, Boca Raton, FL, 2000.
19.
P. A. Farrell and G. I. Shishkin, On the convergence of iterative methods for linear systems arising from singularly perturbed equations, in Proceedings of the Copper Mountain Conference on Iterative Methods, 1998, pp. 1--7; available online from http://www.cs.kent.edu/$\sim$farrell/papers/papers.html.
20.
F. Gaspar, C. Clavero, and F. Lisbona, Some numerical experiments with multigrid methods on Shishkin meshes, J. Comput. Appl. Math., 138 (2002), pp. 21--35.
21.
F. Gaspar, F. Lisbona, and C. Clavero, Multigrid methods and finite difference schemes for $2$D singularly perturbed problems, in Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci. 1988, L. Vulkov, P. Yalamov, and J. Wasniewski, eds., Springer, Berlin, 2001, pp. 128--135.
22.
A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp. 345--363.
23.
A. J. Hoffman, M. S. Martin, and D. J. Rose, Complexity bounds for regular finite difference and finite element grids, SIAM J. Numer. Anal., 10 (1973), pp. 364--369.
24.
R. B. Kellogg, T. Linss, and M. Stynes, A finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions, Math. Comp., 77 (2008), pp. 2085--2096.
25.
R. Kellogg, N. Madden, and M. Stynes, A parameter-robust numerical method for a system of reaction-diffusion equations in two dimensions, Numer. Methods Partial Differential Equations, 24 (2008), pp. 312--334.
26.
N. Kopteva and M. Stynes, A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal., 39 (2001), pp. 1446--1467.
27.
O. Lawlor, H. Govind, I. Dooley, M. Breitenfeld, and L. Kale, Performance degradation in the presence of subnormal floating-point values, in Proceedings of the International Workshop on Operating System Interference in High Performance Applications, 2005; available online from http://research.ihost.com/osihpa/.
28.
T. Linß, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Math. 1985, Springer, Berlin, 2010.
29.
F. Liu, N. Madden, M. Stynes, and A. Zhou, A two-scale sparse grid method for a singularly perturbed reaction--diffusion problem in two dimensions, IMA J. Numer. Anal., 29 (2009), pp. 986--1007.
30.
S. P. MacLachlan, J. D. Moulton, and T. P. Chartier, Robust and adaptive multigrid methods: Comparing structured and algebraic approaches, Numer. Linear Algebra Appl., 19 (2012), pp. 389--413.
31.
S. P. MacLachlan, J. M. Tang, and C. Vuik, Fast and robust solvers for pressure-correction in bubbly flow problems, J. Comput. Phys., 227 (2008), pp. 9742--9761.
32.
S. MacLachlan and N. Madden, Robust Solution of Singularly Perturbed Problems using Multigrid Methods; Analysis and Numerical Results in One and Two Dimensions, Technical report, Department of Mathematics, Tufts University, 2012.
33.
J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996.
34.
K. Morton, Numerical Solution of Convection-Diffusion Problems, Applied Math. Math. Comput. 12, Chapman & Hall, London, 1996.
35.
W. Mulder, Geophysical modelling of $3$D electromagnetic diffusion with multigrid, Comput. Visual. Sci., 11 (2008), pp. 129--138.
36.
M. A. Olshanskii and A. Reusken, On the convergence of a multigrid method for linear reaction-diffusion problem, Computing, 65 (2000), pp. 193--202.
37.
M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia, 2001.
38.
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
39.
B. Reps, W. Vanroose, and H. bin Zubair, On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning, J. Comput. Phys., 229 (2010), pp. 8384--8405.
40.
H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Ser. Comput. Math. 24, 2nd ed., Springer-Verlag, Berlin, 2008.
41.
H.-G. Roos and H. Zarin, A second-order scheme for singularly perturbed differential equations with discontinuous source term, J. Numer. Math., 10 (2002), pp. 275--289.
42.
H.-G. Roos, A note on the conditioning of upwind schemes on Shishkin meshes, IMA J. Numer. Anal., 16 (1996), pp. 529--538.
43.
J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, Front. Appl. Math. 3, S. F. McCormick, ed., SIAM, Philadelphia, 1987, pp. 73--130.
44.
G. I. Shishkin and L. Shishkina, Difference Methods for Singular Perturbation Problems, Chapman & Hall/CRE Monogr. Surv. Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 2008.
45.
G. I. Shishkin, Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Second doctoral thesis, Keldysh Institute, Moscow, 1991 (in Russian).
46.
I. Singer and E. Turkel, A perfectly matched layer for the Helmholtz equation in a semi-infinite strip, J. Comput. Phys., 201 (2004), pp. 439--465.
47.
R. Stevenson, A robust hierarchical basis preconditioner on general meshes, Numer. Math., 78 (1997), pp. 269--303.
48.
K. Stüben, An introduction to algebraic multigrid, in Multigrid, U. Trottenberg, C. Oosterlee, and A. Schüller, eds., Academic, London, 2001, pp. 413--528.
49.
U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic, London, 2001.
50.
N. Umetani, S. P. MacLachlan, and C. W. Oosterlee, A multigrid-based shifted-Laplacian preconditioner for a fourth-order Helmholtz discretization, Numer. Linear Algebra Appl., 16 (2009), pp. 603--626.
51.
R. Vulanović, A priori meshes for singularly perturbed quasilinear two-point boundary value problems, IMA J. Numer. Anal., 21 (2001), pp. 349--366.
52.
J. Xu and Y. Zhu, Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients, Math. Models Methods Appl. Sci., 18 (2008), pp. 77--105.
53.
J. Xu and L. Zikatanov, The method of alternating projections and the method of subspace corrections in Hilbert space, J. Amer. Math. Soc., 15 (2002), pp. 573--597.
54.
H. bin Zubair, S. P. MacLachlan, and C. W. Oosterlee, A geometric multigrid method based on L-shaped coarsening for PDEs on stretched grids, Numer. Linear Algebra Appl., 17 (2010), pp. 871--894.
55.
H. bin Zubair, C. W. Oosterlee, and R. Wienands, Multigrid for high-dimensional elliptic partial differential equations on non-equidistant grids, SIAM J. Sci. Comput., 29 (2007), pp. 1613--1636.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A2225 - A2254
ISSN (online): 1095-7197

History

Submitted: 31 August 2012
Accepted: 30 July 2013
Published online: 26 September 2013

Keywords

  1. boundary-fitted meshes
  2. robust multigrid
  3. preconditioning

MSC codes

  1. 65F10
  2. 65N06
  3. 65N22
  4. 65N55

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media