# Robust Solution of Singularly Perturbed Problems Using Multigrid Methods

## Abstract

### Keywords

### MSC codes

## Get full access to this article

View all available purchase options and get full access to this article.

## References

*The multi-grid method for the diffusion equation with strongly discontinuous coefficients*, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 430--454.

*A note on iterative methods for solving singularly perturbed problems using non-monotone methods on Shishkin meshes*, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 3673--3687.

*On locking and robustness in the finite element method*, SIAM J. Numer. Anal., 29 (1992), pp. 1261--1293.

*Towards optimization of methods for solving boundary value problems in the presence of boundary layers*, Zh. Vychisl. Mat. Mat. Fiz., 9 (1969), pp. 841--859 (in Russian).

*Hierarchical hybrid grids: Achieving TERAFLOP performance on large scale finite element simulations*, Int. J. Parallel Emergent Distrib. Systems, 22 (2007), pp. 311--329.

*Convergence estimates for multigrid algorithms without regularity assumptions*, Math. Comp., 57 (1991), pp. 23--45.

*Multi--level adaptive techniques (MLAT) for singular--perturbation problems*, in Numerical Analysis of Singular Perturbation Problems, P. W. Hemker and J. J. H. Miller, eds., Academic, New York, 1979, pp. 53--142.

*A Multigrid Tutorial*, 2nd ed., SIAM, Philadelphia, 2000.

*A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem*, IMA J. Numer. Anal., 31 (2011), pp. 188--211.

*Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising*, SIAM J. Sci. Comput., 33 (2011), pp. 2972--2994.

*Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate*, ACM Trans. Math. Software, 35 (2008), pp. 22.

*A parameter robust numerical method for a two dimensional reaction-diffusion problem*, Math. Comp., 74 (2005), pp. 1743--1758.

*Direct Methods for Sparse Linear Systems*, Fundamentals of Algorithms 2, SIAM, Philadelphia, 2006.

*An efficient finite-difference scheme for electromagnetic logging in $3$D anisotropic inhomogeneous media*, Geophysics, 68 (2003), pp. 1525--1536.

*Black box multigrid*, J. Comput. Phys., 48 (1982), pp. 366--386.

*Gaussian spectral rules for the three-point second differences. I. A two-point positive definite problem in a semi-infinite domain*, SIAM J. Numer. Anal., 37 (1999), pp. 403--422.

*MA$57$ -- a code for the solution of sparse symmetric definite and indefinite systems*, ACM Trans. Math. Software, 30 (2004), pp. 118--144.

*Robust Computational Techniques for Boundary Layers*, Appl. Math. 16, Chapman & Hall/CRC, Boca Raton, FL, 2000.

*On the convergence of iterative methods for linear systems arising from singularly perturbed equations*, in Proceedings of the Copper Mountain Conference on Iterative Methods, 1998, pp. 1--7; available online from http://www.cs.kent.edu/$\sim$farrell/papers/papers.html.

*Some numerical experiments with multigrid methods on Shishkin meshes*, J. Comput. Appl. Math., 138 (2002), pp. 21--35.

*Multigrid methods and finite difference schemes for $2$D singularly perturbed problems*, in Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci. 1988, L. Vulkov, P. Yalamov, and J. Wasniewski, eds., Springer, Berlin, 2001, pp. 128--135.

*Nested dissection of a regular finite element mesh*, SIAM J. Numer. Anal., 10 (1973), pp. 345--363.

*Complexity bounds for regular finite difference and finite element grids*, SIAM J. Numer. Anal., 10 (1973), pp. 364--369.

*A finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions*, Math. Comp., 77 (2008), pp. 2085--2096.

*A parameter-robust numerical method for a system of reaction-diffusion equations in two dimensions*, Numer. Methods Partial Differential Equations, 24 (2008), pp. 312--334.

*A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem*, SIAM J. Numer. Anal., 39 (2001), pp. 1446--1467.

*Performance degradation in the presence of subnormal floating-point values*, in Proceedings of the International Workshop on Operating System Interference in High Performance Applications, 2005; available online from http://research.ihost.com/osihpa/.

*Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems*, Lecture Notes in Math. 1985, Springer, Berlin, 2010.

*A two-scale sparse grid method for a singularly perturbed reaction--diffusion problem in two dimensions*, IMA J. Numer. Anal., 29 (2009), pp. 986--1007.

*Robust and adaptive multigrid methods: Comparing structured and algebraic approaches*, Numer. Linear Algebra Appl., 19 (2012), pp. 389--413.

*Fast and robust solvers for pressure-correction in bubbly flow problems*, J. Comput. Phys., 227 (2008), pp. 9742--9761.

*Robust Solution of Singularly Perturbed Problems using Multigrid Methods; Analysis and Numerical Results in One and Two Dimensions*, Technical report, Department of Mathematics, Tufts University, 2012.

*Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions*, World Scientific, Singapore, 1996.

*Numerical Solution of Convection-Diffusion Problems*, Applied Math. Math. Comput. 12, Chapman & Hall, London, 1996.

*Geophysical modelling of $3$D electromagnetic diffusion with multigrid*, Comput. Visual. Sci., 11 (2008), pp. 129--138.

*On the convergence of a multigrid method for linear reaction-diffusion problem*, Computing, 65 (2000), pp. 193--202.

*Numerical Computing with IEEE Floating Point Arithmetic*, SIAM, Philadelphia, 2001.

*Maximum Principles in Differential Equations*, Springer-Verlag, New York, 1984.

*On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning*, J. Comput. Phys., 229 (2010), pp. 8384--8405.

*Robust Numerical Methods for Singularly Perturbed Differential Equations*, Springer Ser. Comput. Math. 24, 2nd ed., Springer-Verlag, Berlin, 2008.

*A second-order scheme for singularly perturbed differential equations with discontinuous source term*, J. Numer. Math., 10 (2002), pp. 275--289.

*A note on the conditioning of upwind schemes on Shishkin meshes*, IMA J. Numer. Anal., 16 (1996), pp. 529--538.

*Algebraic multigrid*, in Multigrid Methods, Front. Appl. Math. 3, S. F. McCormick, ed., SIAM, Philadelphia, 1987, pp. 73--130.

*Difference Methods for Singular Perturbation Problems*, Chapman & Hall/CRE Monogr. Surv. Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 2008.

*Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations*, Second doctoral thesis, Keldysh Institute, Moscow, 1991 (in Russian).

*A perfectly matched layer for the Helmholtz equation in a semi-infinite strip*, J. Comput. Phys., 201 (2004), pp. 439--465.

*A robust hierarchical basis preconditioner on general meshes*, Numer. Math., 78 (1997), pp. 269--303.

*An introduction to algebraic multigrid*, in Multigrid, U. Trottenberg, C. Oosterlee, and A. Schüller, eds., Academic, London, 2001, pp. 413--528.

*Multigrid*, Academic, London, 2001.

*A multigrid-based shifted-Laplacian preconditioner for a fourth-order Helmholtz discretization*, Numer. Linear Algebra Appl., 16 (2009), pp. 603--626.

*A priori meshes for singularly perturbed quasilinear two-point boundary value problems*, IMA J. Numer. Anal., 21 (2001), pp. 349--366.

*Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients*, Math. Models Methods Appl. Sci., 18 (2008), pp. 77--105.

*The method of alternating projections and the method of subspace corrections in Hilbert space*, J. Amer. Math. Soc., 15 (2002), pp. 573--597.

*A geometric multigrid method based on L-shaped coarsening for PDEs on stretched grids*, Numer. Linear Algebra Appl., 17 (2010), pp. 871--894.

*Multigrid for high-dimensional elliptic partial differential equations on non-equidistant grids*, SIAM J. Sci. Comput., 29 (2007), pp. 1613--1636.

## Information & Authors

### Information

#### Published In

#### Copyright

#### History

**Submitted**: 31 August 2012

**Accepted**: 30 July 2013

**Published online**: 26 September 2013

#### Keywords

#### MSC codes

### Authors

## Metrics & Citations

### Metrics

### Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

#### Cited By

- Sparse Approximate Multifrontal Factorization with Composite Compression MethodsACM Transactions on Mathematical Software, Vol. 49, No. 3 | 19 September 2023
- An exponential convergence approximation to singularly perturbed problems by Log orthogonal functionsCalcolo, Vol. 59, No. 3 | 13 July 2022
- A Boundary-Layer Preconditioner for Singularly Perturbed Convection DiffusionSIAM Journal on Matrix Analysis and Applications, Vol. 43, No. 2 | 13 April 2022
- A Cascadic Multigrid Algorithm on the Shishkin Mesh for a Singularly Perturbed Elliptic Problem with regular layersJournal of Physics: Conference Series, Vol. 2182, No. 1 | 1 Mar 2022
- Efficient discretization and preconditioning of the singularly perturbed reaction-diffusion problemComputers & Mathematics with Applications, Vol. 109 | 1 Mar 2022
- Robust Discretization and Solvers for Elliptic Optimal Control Problems with Energy RegularizationComputational Methods in Applied Mathematics, Vol. 22, No. 1 | 10 October 2021
- A Cascadic Multigrid Algorithm on the Shishkin Mesh for a Singularly Perturbed Elliptic ProblemJournal of Physics: Conference Series, Vol. 1901, No. 1 | 1 May 2021
- An analysis of diagonal and incomplete Cholesky preconditioners for singularly perturbed problems on layer-adapted meshesJournal of Applied Mathematics and Computing, Vol. 65, No. 1-2 | 15 July 2020
- A Mesh Refinement Algorithm for Singularly Perturbed Boundary and Interior Layer ProblemsInternational Journal of Computational Methods, Vol. 17, No. 07 | 3 May 2019
- Uniformly convergent additive schemes for 2d singularly perturbed parabolic systems of reaction-diffusion typeNumerical Algorithms, Vol. 80, No. 4 | 2 April 2018
- Boundary layer preconditioners for finite-element discretizations of singularly perturbed reaction-diffusion problemsNumerical Algorithms, Vol. 79, No. 1 | 13 November 2017
- An Iterative Tikhonov Regularization for Solving Singularly Perturbed Elliptic PDEMediterranean Journal of Mathematics, Vol. 14, No. 4 | 1 August 2017
- Solving a Singularly Perturbed Elliptic Problem by a Multigrid Algorithm with Richardson ExtrapolationNumerical Analysis and Its Applications | 12 April 2017
- Applying a Patched Mesh Method to Efficiently Solve a Singularly Perturbed Reaction-Diffusion ProblemModeling, Simulation and Optimization of Complex Processes HPSC 2015 | 5 September 2017
- A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted meshIMA Journal of Numerical Analysis, Vol. 36, No. 3 | 24 September 2015
- A multiscale sparse grid finite element method for a two-dimensional singularly perturbed reaction-diffusion problemAdvances in Computational Mathematics, Vol. 41, No. 6 | 7 November 2014
- A two-grid method for elliptic problem with boundary layersApplied Numerical Mathematics, Vol. 93 | 1 Jul 2015
- Numerical MethodsMultiple Time Scale Dynamics | 11 November 2014