Deciding Positivity of Littlewood--Richardson Coefficients

Starting with Knutson and Tao's hive model [J. Amer. Math. Soc., 12 (1999), pp. 1055--1090] we characterize the Littlewood--Richardson coefficient ${c_{\lambda,\mu}^{\nu}}$ of given partitions $\lambda,\mu,\nu\in\mathbb{N}^n$ as the number of capacity achieving hive flows on the honeycomb graph. Based on this, we design a polynomial time algorithm for deciding ${c_{\lambda,\mu}^{\nu}} >0$. This algorithm is easy to state and takes $\mathcal{O}(n^3\log\nu_1)$ arithmetic operations and comparisons. We further show that the capacity achieving hive flows can be seen as the vertices of a connected graph, which leads to new structural insights into Littlewood--Richardson coefficients.

  • 1.  R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, Upper Saddle River, NJ, 1993.Google Scholar

  • 2.  P. Bürgisser and F. Cucker, Condition: The Geometry of Numerical Algorithms, Grundlehren Math. Wiss. 349, Springer, New York, 2013.Google Scholar

  • 3.  P. Bürgisser and  C. Ikenmeyer , A max-flow algorithm for positivity of Littlewood-Richardson coefficients, in Formal Power Series and Algebraic Combinatorics Conference, Hagenberg, Austria, DMTCS, Nancy , France , 2009 , pp. 267 -- 278 . Google Scholar

  • 4.  A. S. Buch , The saturation conjecture (after A. Knutson and T. Tao), with an appendix by William Fulton , Enseign. Math. , 2 ( 2000 ), pp. 43 -- 60 . Google Scholar

  • 5.  A. D. Berenstein and  A. V. Zelevinsky , Triple multiplicities for sl(r + 1) and the spectrum of the exterior algebra of the adjoint representation , J. Algebraic Combin. , 1 ( 1992 ), pp. 7 -- 22 . CrossrefGoogle Scholar

  • 6.  J. A. De Loera and  T. . McAllister, On the computation of Clebsch-Gordan coefficients and the dilation effect , Experiment. Math. , 15 ( 2006 ), pp. 7 -- 19 . CrossrefISIGoogle Scholar

  • 7.  L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.Google Scholar

  • 8.  W. Fulton, Young Tableaux, London Mathematical Society Student Texts 35, Cambridge University Press, Cambridge, 1997.Google Scholar

  • 9.  W. Fulton and  Schubert . Math. Soc. (N. S.) , 37 ( 2000 ), pp. 209 -- 249 . Google Scholar

  • 10.  M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, 1993.Google Scholar

  • 11.  U. Helmke and  J. Rosenthal , Eigenvalue inequalities and Schubert calculus , Math. Nachr. , 171 ( 1995 ), pp. 207 -- 225 . CrossrefISIGoogle Scholar

  • 12.  C. Ikenmeyer, On the Complexity of Computing Kronecker Coefficients and Deciding Positivity of Littlewood-Richardson Coefficients, Master's thesis, Institute of Mathematics, University of Paderborn, Paderborn, Germany, 2008.Google Scholar

  • 13.  C. Ikenmeyer, Small Littlewood-Richardson Coefficients, preprint, arXiv:1209.1521 [math.RT], 2012.Google Scholar

  • 14.  A. A. Klyachko and  Stable , representation theory and Hermitian operators, Selecta Math. (N. S.) , 4 ( 1998 ), pp. 419 -- 445 . Google Scholar

  • 15.  A. Knutson and  T. Tao , The honeycomb model of ${\rm GL}\sb n({\bf C})$ tensor products. I. Proof of the saturation conjecture , J. Amer. Math. Soc. , 12 ( 1999 ), pp. 1055 -- 1090 . CrossrefISIGoogle Scholar

  • 16.  R. C. King C. Tollu and  F. Toumazet , Stretched Littlewood-Richardson and Kostka coefficients, in Symmetry in Physics, CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence , RI , 2004 , pp. 99 -- 112 . Google Scholar

  • 17.  A. Knutson T. Tao and  C. Woodward , The honeycomb model of GL(n) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , J. Amer. Math. Soc. , 17 ( 2004 ), pp. 19 -- 48 . CrossrefISIGoogle Scholar

  • 18.  K. D. Mulmuley and  M. Sohoni , Geometric complexity theory. I. An approach to the P vs. NP and related problems , SIAM J. Comput. , 31 ( 2001 ), pp. 496 -- 526 . LinkISIGoogle Scholar

  • 19.  K. D. Mulmuley and M. Sohoni, Geometric Complexity Theory III: On Deciding Positivity of Littlewood-Richardson Coefficients, preprint, arXiv:cs/0501076[cs.CC], 2005.Google Scholar

  • 20.  K. D. Mulmuley H. Narayanan and  M. Sohoni , Geometric Complexity Theory III: On deciding nonvanishing of a Littlewood-Richardson Coefficient , J. Algebraic Cominatorics , 36 ( 2012 ), pp. 103 -- 110 . CrossrefISIGoogle Scholar

  • 21.  K. D. Mulmuley and  M. Sohoni , Geometric complexity theory. II. Towards explicit obstructions for embeddings among class varieties , SIAM J. Comput. , 38 ( 2008 ), pp. 1175 -- 1206 . LinkISIGoogle Scholar

  • 22.  K. D. Mulmuley and  On P NP and geometric complexity theory , J. ACM , 58 ( 2011 ), 5 . CrossrefISIGoogle Scholar

  • 23.  H. Narayanan , On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients , J. Algebraic Combin. , 24 ( 2006 ), pp. 347 -- 354 . CrossrefISIGoogle Scholar

  • 24.  I. Pak and  E. Vallejo , Combinatorics and geometry of Littlewood-Richardson cones , European J. Combin. , 26 ( 2005 ), pp. 995 -- 1008 . CrossrefISIGoogle Scholar