Beyond Consistent Reconstructions: Optimality and Sharp Bounds for Generalized Sampling, and Application to the Uniform Resampling Problem

Abstract

Generalized sampling is a recently developed linear framework for sampling and reconstruction in separable Hilbert spaces. It allows one to recover any element in any finite-dimensional subspace given finitely many of its samples with respect to an arbitrary basis or frame. Unlike more common approaches for this problem, such as the consistent reconstruction technique of Eldar and others, it leads to numerical methods possessing both guaranteed stability and accuracy. The purpose of this paper is twofold. First, we give a complete and formal analysis of generalized sampling, the main result of which being the derivation of new, sharp bounds for the accuracy and stability of this approach. Such bounds improve upon those given previously and result in a necessary and sufficient condition, the stable sampling rate, which guarantees a priori a good reconstruction. Second, we address the topic of optimality. Under some assumptions, we show that generalized sampling is an optimal, stable method. Correspondingly, whenever these assumptions hold, the stable sampling rate is a universal quantity. In the final part of the paper we illustrate our results by applying generalized sampling to the so-called uniform resampling problem.

Keywords

  1. sampling theory
  2. oblique projections
  3. numerical stability
  4. optimal reconstructions

MSC codes

  1. 94A20
  2. 94A12
  3. 42C40
  4. 42A10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. Adcock and A. C. Hansen, Generalized Sampling and Infinite-Dimensional Compressed Sensing, Technical report NA2011/02, DAMTP, University of Cambridge, UK, 2011.
2.
B. Adcock and A. C. Hansen, Generalized Sampling and the Stable and Accurate Reconstruction of Piecewise Analytic Functions from their Fourier Coefficients, Math. Comput. (to appear), 2013.
3.
B. Adcock and A. C. Hansen, Reduced consistency sampling in Hilbert spaces, in Proceedings of the 9th International Conference on Sampling Theory and Applications, 2011.
4.
B. Adcock and A. C. Hansen, A generalized sampling theorem for stable reconstructions in arbitrary bases, J. Fourier Anal. Appl., 18 (2012), pp. 685--716.
5.
B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon, Appl. Comput. Harmon. Anal., 32 (2012), pp. 357--388.
6.
B. Adcock, A. C. Hansen, E. Herrholz, and G. Teschke, Generalized sampling: Extension to frames and inverse and ill-posed problems, Inverse Problems, 29 (2013), 015008.
7.
B. Adcock, A. C. Hansen, and A. Shadrin, A stability barrier for reconstructions from Fourier samples, SIAM J. Numer. Anal., (to appear), 2013.
8.
A. Aldroubi, Oblique projections in atomic spaces, Proc. Amer. Math. Soc., 124 (1996), pp. 2051--2060.
9.
T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulout, Sparse sampling of signal innovations, IEEE Signal Process. Mag., 25 (2008), pp. 31--40.
10.
A. Böttcher, Infinite matrices and projection methods, in Lectures on Operator Theory and Its Applications (Waterloo, ON, 1994), Fields Inst. Monogr. 3, AMS, Providence, RI, 1996, pp. 1--72.
11.
D. Buckholtz, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc., 128 (1999), pp. 1415--1418.
12.
E. Candès and D. L. Donoho, Recovering edges in ill-posed inverse problems: Optimality of curvelet frames, Ann. Statist., 30 (2002), pp. 784--842.
13.
E. J. Candès, An introduction to compressive sensing, IEEE Signal Process. Mag., 25 (2008), pp. 21--30.
14.
E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise ${C}^2$ singularities, Comm. Pure Appl. Math., 57 (2004), pp. 219--266.
15.
E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution, Comm. Pure Appl. Math.
16.
O. Christensen, Frames and the projection method, Appl. Comput. Harmon. Anal., 1 (1993), pp. 50--53.
17.
O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Basel, Switzerland, 2003.
18.
S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke, The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process., 6 (2008), pp. 157--181.
19.
S. Dahlke, G. Kutyniok, G. Steidl, and G. Teschke, Shearlet Coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal., 27 (2009), pp. 195--214.
20.
M. N. Do and M. Vetterli, The contourlet transform: An efficient directional multiresolution image representation, IEEE Trans. Image Process., 14 (2005), pp. 2091--2106.
21.
D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289--1306.
22.
P. L. Dragotti, M. Vetterli, and T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang--Fix, IEEE Trans. Signal Process., 55 (2007), pp. 1741--1757.
23.
T. Dvorkind and Y. C. Eldar, Robust and consistent sampling, IEEE Signal Process. Lett., 16 (2009), pp. 739--742.
24.
Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl., 9 (2003), pp. 77--96.
25.
Y. C. Eldar, Sampling without input constraints: Consistent reconstruction in arbitrary spaces, in Sampling, Wavelets, and Tomography, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, 2003.
26.
Y. C. Eldar and T. Dvorkind, A minimum squared-error framework for generalized sampling, IEEE Trans. Signal Process., 54 (2006), pp. 2155--2167.
27.
Y. C. Eldar and G. Kutyniok, eds., Compressed Sensing: Theory and Applications, Cambridge University Press, New York, 2012.
28.
Y. C. Eldar and T. Michaeli, Beyond Bandlimited Sampling, IEEE Signal Process. Mag., 26 (2009), pp. 48--68.
29.
Y. C. Eldar and T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Wavelets Multiresolut. Inf. Process., 3 (2005), pp. 347--359.
30.
M. Fornasier and H. Rauhut, Compressive sensing, in Handbook of Mathematical Methods in Imaging, Springer, New York, 2011, pp. 187--228.
31.
A. Gelb and T. Hines, Recovering exponential accuracy from non-harmonic Fourier data through spectral reprojection, J. Sci. Comput., 51 (2012), pp. 158--182.
32.
K. Gröchenig, Z. Rzeszotnik, and T. Strohmer, Quantitative estimates for the finite section method and Banach algebras of matrices, Integral Equations Operator Theory, 67 (2011), pp. 183--202.
33.
R. Hagen, S. Roch, and B. Silbermann, $C^*$-Algebras and Numerical Analysis, Monogr. Textbooks Pure Appl. Math. 236, Marcel Dekker, New York, 2001.
34.
A. C. Hansen, On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators, J. Amer. Math. Soc., 24 (2011), pp. 81--124.
35.
A. C. Hansen, On the approximation of spectra of linear operators on Hilbert spaces, J. Funct. Anal., 254 (2008), pp. 2092--2126.
36.
D. M. Healy and J. B. Weaver, Two applications of wavelet transforms in magnetic resonance imaging, IEEE Trans. Inform. Theory, 38 (1992), pp. 840--862.
37.
E. Heinemeyer, M. Lindner, and R. Potthast, Convergence and numerics of a multisection method for scattering by three-dimensional rough surfaces, SIAM J. Numer. Anal., 46 (2008), pp. 1780--1798.
38.
A. Hirabayashi and M. Unser, Consistent sampling and signal recovery, IEEE Trans. Signal Process., 55 (2007), pp. 4104--4115.
39.
T. Hrycak and K. Gröchenig, Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method, J. Comput. Phys., 229 (2010), pp. 933--946.
40.
J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, Selection of a convolution function for Fourier inversion using gridding, IEEE Trans. Med. Imaging, 10 (1991), pp. 473--478.
41.
S. Jaffard, A density criterion for frames of complex exponentials, Mich. Math. J., 38 (1991), pp. 339--348.
42.
A. J. Jerri, The Shannon sampling theorem---its various extensions and applications: A tutorial review, Proc. IEEE, 65 (1977), pp. 1565--1596.
43.
G. Kutyniok, J. Lemvig, and W.-Q. Lim, Compactly supported shearlets, in Approximation Theory XIII: San Antonio 2010, M. Neamtu and L. Schumaker, eds., Springer Proc. Math. 13, Springer, New York, 2012, pp. 163--186.
44.
A. F. Laine, Wavelets in temporal and spatial processing of biomedical images, Annual Rev. Biomed. Engrg., 02 (2000), pp. 511--550.
45.
M. Lindner, Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method, Frontiers in Math., Birkhäuser Verlag, Basel, Switzerland, 2006.
46.
C. H. Meyer, B. S. Hu, D. G. Nishimura, and A. Macovski, Fast spiral coronary artery imaging, Magn. Reson. Med., 28 (1992), pp. 202--213.
47.
J. A. Parker, R. V. Kenyon, and D. E. Troxel, Comparison of interpolating methods for image resampling, IEEE Trans. Med. Imaging, MI-2 (1983), pp. 31--39.
48.
D. D.-Y. Po and M. N. Do, Directional multiscale modeling of images using the contourlet transform, Trans. Img. Proc., 15 (2006), pp. 1610--1620.
49.
D. Rosenfeld, An optimal and efficient new gridding algorithm using singular value decomposition, Magn. Reson. Med., 40 (1998), pp. 14--23.
50.
D. Rosenfeld, New approach to gridding using regularlization and estimation theory, Magn. Reson. Med., 48 (2002), pp. 193--202.
51.
J. Steinberg, Oblique projections in Hilbert spaces, Integral Equations Operator Theory, 38 (2000), pp. 81--119.
52.
D. Szyld, The many proofs of an identity on the norm of oblique projections, Numer. Algorithms, 42 (2006), pp. 309--323.
53.
W.-S. Tang, Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces, Proc. Amer. Math. Soc., 128 (1999), pp. 463--473.
54.
L. N. Trefethan and D. Bau III, Numerical Linear Algebra, SIAM, Philadephia, 1997.
55.
M. Unser, Sampling---50 years after Shannon, Proc. IEEE, 88 (2000), pp. 569--587.
56.
M. Unser and A. Aldroubi, A general sampling theory for nonideal acquisition devices, IEEE Trans. Signal Process., 42 (1994), pp. 2915--2925.
57.
M. Unser and J. Zerubia, Generalized sampling: stability and performance analysis, IEEE Trans. Signal Process., 45 (1997), pp. 2941--2950.
58.
M. Unser and J. Zerubia, A generalized sampling theory without band-limiting constraints, IEEE Trans. Circuits Systems II, 45 (1998), pp. 959--969.
59.
R. Van de Walle, H. Barrett, K. Myers, M. Altbach, B. Desplanques, A. Gmitro, J. Cornelis, and I. Lemahieu, Reconstruction of MR images from data acquired on a general noregular grid by pseudoinverse calculation, IEEE Trans. Med. Imaging, 19 (2000), pp. 1160--1167.
60.
M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation, IEEE Trans. Signal Process., 50 (2002), pp. 1417--1428.
61.
A. Viswanathan, A. Gelb, D. Cochran, and R. Renaut, On reconstructions from non-uniform spectral data, J. Sci. Comput., 45 (2010), pp. 487--513.
62.
J. B. Weaver, Y. Xu, D. M. Healy, and J. R. Driscoll, Wavelet-encoded MR imaging, Magn. Reson. Med., 24 (1992), pp. 275--287.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 3132 - 3167
ISSN (online): 1095-7154

History

Submitted: 22 October 2012
Accepted: 9 July 2013
Published online: 16 October 2013

Keywords

  1. sampling theory
  2. oblique projections
  3. numerical stability
  4. optimal reconstructions

MSC codes

  1. 94A20
  2. 94A12
  3. 42C40
  4. 42A10

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media