Abstract

In this paper, we present a probabilistic numerical algorithm combining dynamic programming, Monte Carlo simulations, and local basis regressions to solve nonstationary optimal multiple switching problems in infinite horizon. We provide the rate of convergence of the method in terms of the time step used to discretize the problem, of the regression basis used to approximate conditional expectations, and of the truncating time horizon. To make the method viable for problems in high dimension and long time horizon, we extend a memory reduction method to the general Euler scheme, so that, when performing the numerical resolution, the storage of the Monte Carlo simulation paths is not needed. Then, we apply this algorithm to a model of optimal investment in power plants in dimension eight, i.e., with two different technologies and six random factors.

Keywords

  1. optimal switching
  2. Monte Carlo algorithm
  3. local basis regression
  4. optimal investment in power generation

MSC codes

  1. 93E20
  2. 91G60
  3. 91G80

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Aïd, L. Campi, and N. Langrené, A structural risk-neutral model for pricing and hedging power derivatives, Math. Finance, 23 (2013), pp. 387--438.
2.
R. Aïd, L. Campi, N. Langrené, and H. Pham, A Probabilistic Numerical Method for Optimal Multiple Switching Problem and Application to Investments in Electricity Generation, preprint, 2012.
3.
R. Aïd, L. Campi, A. Nguyen Huu, and N. Touzi, A structural risk-neutral model of electricity prices, Int. J. Theor. Appl. Finance, 12 (2009), pp. 925--947.
4.
G. Benmenzer, E. Gobet, and C. Jérusalem, Arbitrage Free Cointegrated Models in Gas and Oil Future Markets, Technical report, GDF SUEZ and Laboratoire Jean Kuntzmann, Grenoble, France, 2007.
5.
A. Botterud, M.D. Ilic, and I. Wangensteen, Optimal investments in power generation under centralized and decentralized decision making, IEEE Trans. Power Syst., 20 (2005), pp. 254--263.
6.
B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Process. Appl., 111 (2004), pp. 175--206.
7.
B. Bouchard and X. Warin, Monte-Carlo valorisation of American options: Facts and new algorithms to improve existing methods, in Numerical Methods in Finance, Springer Proc. Math. 12, R. Carmona, P. Del Moral, P. Hu, and N. Oudjane, eds., Springer, Berlin, 2012, pp. 215--255.
8.
R. Carmona and M. Coulon, A survey of commodity markets and structural models for electricity prices, in Quantitative Energy Finance: Modeling, Pricing and Hedging in Energy and Commodity Markets, F.E. Benth, V. Kholodnyi, and P. Laurence, eds., Springer, Berlin, 2013, pp. 41--83.
9.
R. Carmona, P. Del Moral, N. Oudjane, and P. Hu, Numerical Methods in Finance, Springer, Berlin, 2012.
10.
R. Carmona and M. Ludkovski, Pricing asset scheduling flexibility using optimal switching, Appl. Math. Finance, 15 (2008), pp. 405--447.
11.
J. Carriere, Valuation of the early-exercise price for options using simulations and nonparametric regression, Insurance Math. Econom., 19 (1996), pp. 19--30.
12.
R. Chan, Y. Chen, and K.-M. Yeung, A memory reduction method in pricing American options, J. Stat. Comput. Simul., 74 (2004), pp. 501--511.
13.
R. Chan, C.-Y. Wong, and K.-M. Yeung, Pricing multi-asset American-style options by memory reduction Monte Carlo methods, Appl. Math. Comput., 179 (2006), pp. 535--544.
14.
R. Chan and T. Wu, Memory-reduction method for pricing American-style options under exponential Lévy processes, East Asian J. Appl. Math., 1 (2011), pp. 20--34.
15.
J.F. Chassagneux, R. Elie, and I. Kharroubi, Discrete-time approximation of multidimensional BSDEs with oblique reflections, Ann. Appl. Probab., 22 (2012), pp. 971--1007.
16.
B. El Asri, Optimal multi-modes switching problem in infinite horizon, Stoch. Dyn., 10 (2010), pp. 231--261.
17.
M. Fischer and G. Nappo, On the moments of the modulus of continuity of Itô processes, Stoch. Anal. Appl., 28 (2009), pp. 103--122.
18.
P. Gassiat, I. Kharroubi, and H. Pham, Time discretisation and quantization methods for optimal multiple switching problem, Stochastic Process. Appl., 122 (2012), pp. 2019--2052.
19.
E. Gobet, J-P. Lemor, and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab., 15 (2005), pp. 2172--2202.
20.
S. Hamadène, Optimal switching systems of reflected BSDEs and systems of variational inequalities with interconnected obstacles, in Surveys in Stochastic Processes, EMS Ser. Congr. Rep., J. Blath, P. Imkeller, and S. Roelly, eds., European Mathematical Society, Zürich, Switzerland, 2011, pp. 1--27.
21.
S. Hamadène, J-P. Lepeltier, and Z. Wu, Infinite horizon reflected BSDEs and applications in mixed control and game problems, Probab. Math. Statist., 19 (1999), pp. 211--234.
22.
Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), pp. 89--121.
23.
P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 3rd ed., Stoch. Model. Appl. Probab. 23, Springer, Berlin, 1999.
24.
M. Kohler, A review on regression based Monte Carlo methods for pricing American options, in Recent Developments in Applied Probability and Statistics, L. Devroye, B. Karasözen, M. Kohler, and R. Korn, eds., Physica-Verlag, Heidelberg, 2010, pp. 39--61.
25.
D. Kroese, T. Taimre, and Z. Botev, Handbook of Monte Carlo Methods, Wiley Ser. Probab. Stat. 706, Wiley, New York, 2011.
26.
N. Langrené, W. van Ackooij, and F. Bréant, Dynamic constraints for aggregated units: Formulation and application, IEEE Trans. Power Syst., 26 (2011), pp. 1349--1356.
27.
J-P. Lemor, E. Gobet, and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations, Bernoulli, 12 (2006), pp. 889--916.
28.
F. Longstaff and E. Schwartz, Valuing American options by simulation: A simple least-squares approach, Rev. Financ. Stud., 14 (2001), pp. 113--147.
29.
B. Mo, J. Hegge, and I. Wangensteen, Stochastic generation expansion planning by means of stochastic dynamic programming, IEEE Trans. Power Syst., 6 (1991), pp. 662--668.
30.
J. Obermayer, An analysis of the fundamental price drivers of EU ETS carbon credits, master's thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2009.
31.
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Springer, Berlin, 1999.
32.
R. Seydel, Existence and uniqueness of viscosity solutions for QVI associated with impulse control of jump-diffusions, Stochastic Process. Appl., 119 (2009), pp. 3719--3748.
33.
X. Tan, A splitting method for fully nonlinear degenerate parabolic PDEs, Electron. J. Probab., 18 (2013), pp. 1--24.
34.
N. Todorović, Bewertung Amerikanischer Optionen mit Hilfe von regressionbasierten Monte-Carlo-Verfahren, Ph.D. thesis, University of Saarland, Saarbrücken, Germany, 2007.
35.
J. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American-style options, IEEE Trans. Neural Network, 12 (2001), pp. 694--703.
36.
A. Veraart and L. Veraart, Stochastic volatility and stochastic leverage, Ann. Finance, 8 (2012), pp. 205--233.
37.
V. Volpe, The Electricity Price Modelling and Derivatives Pricing in the Nord Pool Market, Ph.D. thesis, Università della Svizzera italiana, Lugano, Switzerland, 2009.
38.
A. Wagner, Residual Demand Modeling and Application to Electricity Pricing, Technical report 213, Fraunhofer ITWM, Department for Financial Mathematics, Kaiserslautern, Germany, 2012.

Information & Authors

Information

Published In

History

Submitted: 1 November 2012
Accepted: 20 December 2013
Published online: 11 March 2014

Keywords

  1. optimal switching
  2. Monte Carlo algorithm
  3. local basis regression
  4. optimal investment in power generation

MSC codes

  1. 93E20
  2. 91G60
  3. 91G80

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media