Convergence Analysis of a Discontinuous Galerkin/Strang Splitting Approximation for the Vlasov--Poisson Equations

A rigorous convergence analysis of the Strang splitting algorithm with a discontinuous Galerkin approximation in space for the Vlasov--Poisson equations is provided. It is shown that under suitable assumptions the error is of order $\mathcal{O}(\tau^2+h^q +h^q/\tau)$, where $\tau$ is the size of a time step, $h$ is the cell size, and $q$ the order of the discontinuous Galerkin approximation. In order to investigate the recurrence phenomena for approximations of higher order as well as to compare the algorithm with numerical results already available in the literature a number of numerical simulations are performed.

  • 1.  T. D. Arber and  R. Vann , A critical comparison of Eulerian-grid-based Vlasov solvers , J. Comput. Phys. , 180 ( 2002 ), pp. 339 -- 357 . CrossrefISIGoogle Scholar

  • 2.  E. A. Belli, Studies of Numerical Algorithms for Gyrokinetics and the Effects of Shaping on Plasma Turbulence, Ph.D. thesis, Princeton University, Princeton, NJ, 2006. Google Scholar

  • 3.  N. Besse and  M. Mehrenberger , Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system , Math. Comp. , 77 ( 2008 ), pp. 93 -- 123 . CrossrefISIGoogle Scholar

  • 4.  N. Besse , Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system , SIAM J. Numer. Anal. , 42 ( 2005 ), pp. 350 -- 382 . LinkISIGoogle Scholar

  • 5.  N. Besse , Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the one-dimensional Vlasov-Poisson system , SIAM J. Numer. Anal. , 46 ( 2008 ), pp. 639 -- 670 . LinkISIGoogle Scholar

  • 6.  M. Bostan and  N. Crouseilles , Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell system for laser-plasma interaction , Numer. Math. , 112 ( 2009 ), pp. 169 -- 195 . CrossrefISIGoogle Scholar

  • 7.  F. Charles B. Després and  M. Mehrenberger , Enhanced convergence estimates for semi-Lagrangian schemes. Application to the Vlasov--Poisson equation , SIAM J. Numer. Anal. , 51 ( 2013 ), pp. 840 -- 863 . LinkISIGoogle Scholar

  • 8.  C. Z. Cheng and  G. Knorr , The integration of the Vlasov equation in configuration space , J. Comput. Phys. , 22 ( 1976 ), pp. 330 -- 351 . CrossrefISIGoogle Scholar

  • 9.  N. Crouseilles, E. Faou, and M. Mehrenberger, High Order Runge--Kutta--Nyström Splitting Methods for the Vlasov--Poisson Equation. http://hal.inria.fr/inria-00633934/ PDF/cfm.pdf. Google Scholar

  • 10.  N. Crouseilles M. Mehrenberger and  F. Vecil , Discontinuous Galerkin semi-Lagrangian method for Vlasov--Poisson, in CEMRACS 2010, ESAIM Proc. 32, EDP Sciences, Les Ulis , France , 2011 , pp. 211 -- 230 . Google Scholar

  • 11.  L. Einkemmer and  A. Ostermann , Convergence analysis of Strang splitting for Vlasov--type equations . SIAM J. Numer. Anal. , 52 ( 2014 ), pp. 140 -- 155 . LinkISIGoogle Scholar

  • 12.  M. R. Fahey and J. Candy, GYRO: A 5-d gyrokinetic-Maxwell solver, in Proceedings of the ACM/IEEE SC2004 Conference, 2008, p. 26. Google Scholar

  • 13.  F. Filbet and  E. Sonnendrücker , Comparison of Eulerian Vlasov solvers , Comput. Phys. Comm. , 150 ( 2003 ), pp. 247 -- 266 . CrossrefISIGoogle Scholar

  • 14.  R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. Google Scholar

  • 15.  R. E. Heath I. M. Gamba P. J. Morrison and  C. Michler , A discontinuous Galerkin method for the Vlasov-Poisson system , J. Comput. Phys. , 231 ( 2011 ), pp. 1140 -- 1174 . CrossrefISIGoogle Scholar

  • 16.  R. E. Heath, Analysis of the Discontinuous Galerkin Method Applied to Collisionless Plasma Physics, Ph.D. thesis, University of Texas at Austin, 2007. Google Scholar

  • 17.  T. Jahnke and  C. Lubich , Error bounds for exponential operator splittings , BIT , 40 ( 2000 ), pp. 735 -- 744 . CrossrefISIGoogle Scholar

  • 18.  S. M. H. Jenab I. Kourakis and  H. Abbasi , Fully kinetic simulation of ion acoustic and dust-ion acoustic waves , Phys. Plasmas , 18 ( 2011 ), 073703 . CrossrefISIGoogle Scholar

  • 19.  A. Mangeney F. Califano C. Cavazzoni and  P. Travnicek , A numerical scheme for the integration of the Vlasov-Maxwell system of equations , J. Comput. Phys. , 179 ( 2002 ), pp. 495 -- 538 . CrossrefISIGoogle Scholar

  • 20.  M. Mehrenberger, C. Steiner, L. Marradi, N. Crouseilles, E. Sonnendrücker, and B. Afeyan, Vlasov on GPU (VOG project), preprint, arXiv:1301.5892, 2013. Google Scholar

  • 21.  K. W. Morton A. Priestley and  E. Süli , Stability of the Lagrange-Galerkin method with non-exact integration , Modél. Math. Anal. Numér. , 22 ( 1988 ), pp. 625 -- 653 . ISIGoogle Scholar

  • 22.  G. M. Phillips, Interpolation and Approximation by Polynomials, Springer, New York, 2003. Google Scholar

  • 23.  J. M. Qiu and  C. W. Shu , Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov--Poisson system , J. Comput. Phys. , 230 ( 2011 ), pp. 8386 -- 8409 . CrossrefISIGoogle Scholar

  • 24.  T. Respaud and  E. Sonnendrücker , Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations , Numer. Math. , 118 ( 2011 ), pp. 329 -- 366 . CrossrefISIGoogle Scholar

  • 25.  J. A. Rossmanith and  D. C. Seal , A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov--Poisson equations , J. Comput. Phys. , 230 ( 2011 ), pp. 6203 -- 6232 . CrossrefISIGoogle Scholar

  • 26.  A. Shadrin , Twelve proofs of the Markov inequality, in Approximation Theory: A Volume Dedicated to Borislav Bojanov, D. K. Dimitrov et al., eds., Marin Drinov , Sofia , 2004 , pp. 233 -- 298 . Google Scholar

  • 27.  H. Yang and F. Li, Error Estimates of Runge--Kutta Discontinuous Galerkin Methods for the Vlasov--Maxwell System, preprint, arXiv:1306.0636, 2013. Google Scholar

  • 28.  T. Zhou Y. Guo and  C. W. Shu , Numerical study on Landau damping , Phys. D , 157 ( 2001 ), pp. 322 -- 333 . CrossrefISIGoogle Scholar