# An Upper Bound on the Fractional Chromatic Number of Triangle-Free Subcubic Graphs

## Abstract

### MSC codes

### MSC codes

## Get full access to this article

View all available purchase options and get full access to this article.

## References

*Deploying Robots with Two Sensors in $K_{1,6}$-Free Graphs*, submitted.

*Subcubic triangle-free graphs have fractional chromatic number at most*14/5, J. Lond. Math. Soc., 89 (2014), pp. 641--662.

*On the size of independent sets in graphs*, Congr. Numer., 21 (1978), pp. 269--274.

*The fractional chromatic number of triangle-free subcubic graphs*, European J. Combin., 35 (2014), pp. 184--220.

*The list chromatic index of a bipartite multigraph*, J. Combin. Theory Ser. B, 63 (1995), pp. 153--158.

*The fractional chromatic number of graphs of maximum degree at most three*, SIAM J. Discrete Math., 23 (2009), pp. 1762--1775.

*A new proof of the independence ratio of triangle-free cubic graphs*, Discrete Math., 233 (2001), pp. 233--237.

*Independent sets in triangle-free cubic planar graphs*, J. Combin. Theory Ser. B, 96 (2006), pp. 253--275.

*Linear colorings of subcubic graphs*, European J. Combin., 34 (2013), pp. 1040--1050.

*The fractional chromatic number of triangle-free graphs with $\Delta \leq 3$*, Discrete Math., 312 (2012), pp. 3502--3516.

*Solutions of irreflexive relations*, Ann. of Math., 58 (1953), pp. 573--580.

*Fractional Graph Theory. A Rational Approach to the Theory of Graphs*, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, New York, 1997.

*Some Ramsey-type numbers and the independence ratio*, Trans. Amer. Math. Soc., 256 (1979), pp. 353--370.

## Information & Authors

### Information

#### Published In

#### Copyright

#### History

**Submitted**: 29 November 2012

**Accepted**: 21 May 2014

**Published online**: 31 July 2014

#### MSC codes

#### MSC codes

### Authors

## Metrics & Citations

### Metrics

### Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.