Abstract

We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

Keywords

  1. embedded Runge--Kutta methods
  2. spatially partitioned methods
  3. conservation laws
  4. method of lines

MSC codes

  1. 35L65
  2. 65L06
  3. 65M20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 797--823.
2.
T. Belytschko, H.-J. Yen, and R. Mullen, Mixed methods for time integration, Comput. Methods Appl. Mech. Engrg., 17 (1979), pp. 259--275.
3.
M. H. Carpenter, D. Gottlieb, S. Abarbanel, and W.-S. Don, The theoretical accuracy of Runge--Kutta time discretizations for the initial boundary value problem: A study of the boundary error, SIAM J. Sci. Comput., 16 (1995), pp. 1241--1252.
4.
E. Constantinescu and A. Sandu, Multirate timestepping methods for hyperbolic conservation laws, J. Sci. Comput., 33 (2007), pp. 239--278.
5.
R. de Loubens, A. Riaz, and H. A. Tchelepi, Error analysis of an adaptive implicit scheme for hyperbolic conservation laws, SIAM J. Sci. Comput., 31 (2009), pp. 2890--2914.
6.
K. Duraisamy and J. D. Baeder, Implicit scheme for hyperbolic conservation laws using nonoscillatory reconstruction in space and time, SIAM J. Sci. Comput., 29 (2007), pp. 2607--2620.
7.
K. Duraisamy, J. O. Baeder, and J.-G. Liu, Concepts and application of time-limiters to high resolution schemes, J. Sci. Comput., 19 (2003), pp. 139--162.
8.
L. Ferracina and M. N. Spijker, An extension and analysis of the Shu--Osher representation of Runge--Kutta methods, Math. Comp., 74 (2005), pp. 201--219.
9.
S. Forth, A second order accurate, space-time limited, BDF scheme for the linear advection equation, in Godunov Methods, E. Toro, ed., Springer US, Boston, 2001, pp. 335--342.
10.
S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89--112.
11.
E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer-Verlag, New York, 1993.
12.
E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996.
13.
E. Harabetian and R. L. Pego, Nonconservative hybrid shock capturing schemes, J. Comput. Phys., 105 (1993), pp. 1--13.
14.
A. Harten and G. Zwas, Self-adjusting hybrid schemes for shock computations, J. Comput. Phys., 9 (1972), pp. 568--583.
15.
W. Hundsdorfer, A. Mozartova, and V. Savcenco, Monotonicity conditions for multirate and partitioned explicit Runge--Kutta schemes, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Springer, Heidelberg, (2012), pp. 177--195.
16.
G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), pp. 202--228.
17.
C. A. Kennedy and M. H. Carpenter, Additive Runge--Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), pp. 139--181.
18.
D. I. Ketcheson and A. J. Ahmadia, Optimal stability polynomials for numerical integration of initial value problems, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 247--271.
19.
D. I. Ketcheson, M. Parsani, and R. J. LeVeque, High-order wave propagation algorithms for hyperbolic systems, SIAM J. Sci. Comput., 35 (2013), pp. A351--A377.
20.
D. I. Ketcheson, K. Mandli, A. Ahmadia, A. Alghamdi, M. Quezada de Luna, M. Parsani, M. Knepley, and M. Emmett, Pyclaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems, SIAM J. Sci. Comput., 34 (2012), pp. C210--C231.
21.
C. B. Macdonald, Constructing High-Order Runge--Kutta Methods with Embedded Strong-Stability-Preserving Pairs, Master's thesis, Simon Fraser University, Burnaby, BC, Canada, 2003.
22.
M. Motamed, C. B. Macdonald, and S. J. Ruuth, On the linear stability of the fifth-order WENO discretization, J. Sci. Comput., 47 (2010), pp. 127--149.
23.
S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comp., 41 (1983), pp. 321--336.
24.
M. B. P. Van Slingerland and C. Vuik, A Local Theta Scheme for Advection Problems with Strongly Varying Meshes and Velocity Profiles, Technical report, Delft University of Technology, Delft, The Netherlands, 2008.
25.
S. J. Ruuth and R. J. Spiteri, High-order strong-stability-preserving Runge--Kutta methods with downwind-biased spatial discretizations, SIAM J. Numer. Anal., 42 (2004), pp. 974--996.
26.
J. Sanz-Serna, J. Verwer, and W. Hundsdorfer, Convergence and order reduction of Runge--Kutta schemes applied to evolutionary problems in partial differential equations, Numer. Math., 50 (1986), pp. 405--418.
27.
C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1073--1084.
28.
C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51 (2009), pp. 82--126.
29.
C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439--471.
30.
C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83 (1989), pp. 32--78.
31.
R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40 (2002), pp. 469--491.
32.
H. Tang and G. Warnecke, High resolution schemes for conservation laws and convection-diffusion equations with varying time and space grids, J. Comput. Math., 24 (2006), pp. 121--140.
33.
E. Timofeev and F. Norouzi, Application of a new hybrid explicit-implicit flow solver to 1d unsteady flows with shock waves, in Proceedings of the 28th International Symposium on Shock Waves, Springer, Berlin, 2012, pp. 245--250.
34.
J. H. Verner, Explicit Runge--Kutta methods with estimates of the local truncation error, SIAM J. Numer. Anal., 15 (1978), pp. 772--790.
35.
J. G. Verwer, Explicit Runge--Kutta methods for parabolic partial differential equations, Appl. Numer. Math., 22 (1996), pp. 359--379.
36.
R. Wang and R. J. Spiteri, Linear instability of the fifth-order WENO method, SIAM J. Numer. Anal., 45 (2007), pp. 1871--1901.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2887 - 2910
ISSN (online): 1095-7170

History

Submitted: 17 January 2013
Accepted: 24 July 2013
Published online: 30 October 2013

Keywords

  1. embedded Runge--Kutta methods
  2. spatially partitioned methods
  3. conservation laws
  4. method of lines

MSC codes

  1. 35L65
  2. 65L06
  3. 65M20

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.