Abstract

Molecules of a nematic liquid crystal respond to an applied magnetic field by reorienting themselves in the direction of the field. Since the dielectric anisotropy of a nematic is small, it takes relatively large fields to elicit a significant liquid crystal response. The interaction may be enhanced in colloidal suspensions of ferromagnetic particles in a liquid crystalline matrix---ferronematics---as proposed by Brochard and de Gennes in 1970. The ability of these particles to align with the field and simultaneously cause reorientation of the nematic molecules greatly increases the magnetic response of the mixture. Essentially the particles provide an easy axis of magnetization that interacts with the liquid crystal via surface anchoring. We derive an expression for the effective energy of ferronematic in the dilute limit, that is, when the number of particles tends to infinity while their total volume fraction tends to zero. The total energy of the mixture is assumed to be the sum of the bulk elastic liquid crystal contribution, the anchoring energy of the liquid crystal on the surfaces of the particles, and the magnetic energy of interaction between the particles and the applied magnetic field. The homogenized limiting ferronematic energy is obtained rigorously using a variational approach. It generalizes formal expressions previously reported in the physical literature.

Keywords

  1. ferronematics
  2. liquid crystal
  3. homogenization

MSC codes

  1. 35B27
  2. 35Q56

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Brochard and P. G. de Gennes, Theory of magnetic suspensions in liquid crystals, J. Phys. France, 31 (1970), pp. 691--708.
2.
J. Rault, P. E. Cladis, and J. P. Burger, Ferronematics, Phys. Lett., 32A (1970), pp. 199--200.
3.
S. H. Chen and N. M. Amer, Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals, Phys. Rev. Lett., 51 (1983), pp. 2298--2301.
4.
S. V. Burylov, L. Raikher, and A. N. Zakhlevnykh, Orientational structure and magnetic properties of ferronematic in an external field, Zh. Eksp. Teor. Fiz., 91 (1986), pp. 545--551.
5.
S. V. Burylov and L. Raikher, Ferronematics: On the development of the continuum theory approach, J. Magnetism Magnetic Materials, 85 (1990), pp. 74--76.
6.
S. V. Burylov and L. Raikher, Orientation of a solid particle embedded in a monodomain nematic liquid crystal, Phys. Rev. E, 50 (1994), pp. 358--367.
7.
S. V. Burylov and L. Raikher, Macroscopic properties of ferronematics caused by orientational interactions on the particle surfaces. I, Extended continuum model, Mol. Cryst. Liq. Cryst., 258 (1995), pp. 107--122.
8.
L. Raikher, Orientational Frederiks-like transitions in ferronematics, in Phase Transitions in Complex Fluids, P. Toledano and A. M. Figueiredo Neto, eds, World Scientific, Singapore, 1998, pp. 295--315.
9.
R. E. Bena and E. Petrescu, Surface effects on magnetic Freedericksz transition in ferronematics with soft particle anchoring, J. Magnetism Magnetic Materials, 263 (2003), pp. 353--359.
10.
P. Kopcansky, M. Koneracka, I. Potocova, M. Timko, J. Jadzyn, and G. Czechowski, The anchoring of nematic molecules on magnetic particles in some types of ferronematics, Czech J. Phys., 51 (2001), p. 59.
11.
I. Potocova, P. Kopcansky, M. Koneracka, M. Timko, J. Jadzyn, and G. Czechowski, The influence of magnetic field on electric Fredericksz transition in $8$CB-based ferronematic, J. Magnetism Magnetic Materials, 196--197 (1999), pp. 578--580.
12.
P. Kopcansky, I. Potocova, M. Koneracka, M. Timko, A. Jansen, J. Jadzyn, and G. Czechowski, The anchoring of nematic molecules on magnetic particles in some types of ferroelectrics, J. Magnetism Magnetic Materials, 289 (2005), pp. 101--104.
13.
V. I Zadorozhnii, A. N. Vasilev, V. Yu. Reshetnyak, K. S. Thomas, and T. J. Slukin, Nematic director response in ferronematic cells, Europhys. Lett., 73 (2006), pp. 408--414.
14.
L. M. Lopatina and J. V. Selinger, Theory of ferroelectric nanoparticles in nematic liquid crystals, Phys. Rev. Lett., 102 (2009), 197802.
15.
L. M. Lopatina and J. V. Selinger, Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals, Phys. Rev. E, 84 (2011), 041703.
16.
J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1991), pp. 97--120.
17.
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., Course of Theoretical Physics 8, Butterworth--Heinemann, Oxford, UK, 1984.
18.
E. G. Virga, Variational Theories for Liquid Crystals, Chapman & Hall, London, 1994.
19.
N. Mottram and C. Newton, Introduction to Q-Tensor Theory, Technical report, University of Strathclyde, Glasgow, UK, 2004.
20.
P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, UK, 1993.
21.
L. Berlyand and E. Khruslov, Competition between the surface and the boundary layer energies in a Ginzburg-Landau model of a liquid crystal composite, Asymptot. Anal., 29 (2002), pp. 185--219.
22.
E. Khruslov, Asymptotic behavior of the second boundary value problem under fragmentation of the domain's boundary, Mat. Sb., 106 (1978), pp. 604--621.
23.
L. Berlyand, Homogenization of the Ginzburg-Landau functional with surface energy term, Asymptot. Anal., 21 (1999), pp. 379--399.
24.
L. Borcea and O. Bruno, On the magneto-elastic properties of elastomer-ferromagnet composites, J. Mech. Phys. Solids, 49 (2001), pp. 2877--2919.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 237 - 262
ISSN (online): 1095-712X

History

Submitted: 20 February 2013
Accepted: 4 December 2013
Published online: 6 March 2014

Keywords

  1. ferronematics
  2. liquid crystal
  3. homogenization

MSC codes

  1. 35B27
  2. 35Q56

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media