Computational Methods in Science and Engineering

Interior Eigenvalues from Density Matrix Expansions in Quantum Mechanical Molecular Dynamics

Abstract

An accelerated polynomial expansion scheme to construct the density matrix in quantum mechanical molecular dynamics simulations is proposed. The scheme is based on recursive density matrix expansions, e.g., [A. M. N. Niklasson, Phys. Rev. B, 66 (2002), 155115], which are accelerated by a scale-and-fold technique [E. H. Rubensson, J. Chem. Theory Comput., 7 (2011), pp. 1233--1236]. The acceleration scheme requires interior eigenvalue estimates, which may be expensive and cumbersome to come by. Here we show how such eigenvalue estimates can be extracted from the recursive expansion by a simple and robust procedure at a negligible computational cost. Our method is illustrated with density functional tight-binding Born--Oppenheimer molecular dynamics simulations, where the computational effort is dominated by the density matrix construction. In our analysis we identify two different phases of the recursive polynomial expansion, the conditioning and purification phases, and we show that the acceleration represents an improvement of the conditioning phase, which typically gives a significant reduction of the computational cost.

Keywords

  1. Born--Oppenheimer molecular dynamics
  2. density functional theory
  3. density matrix purification
  4. Fermi operator expansion
  5. homo-lumo gap
  6. interior eigenvalues
  7. linear scaling electronic structure theory
  8. matrix functions
  9. nonmonotonic expansion
  10. recursive expansion
  11. scale-and-fold acceleration
  12. trace-correcting purification

MSC codes

  1. 65F15
  2. 65F60
  3. 70E55
  4. 81-08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, Philadelphia, 2000.
2.
M. Barrault, E. Cancès, W. W. Hager, and C. Le Bris, Multilevel domain decomposition for electronic structure calculations, J. Comput. Phys., 222 (2007), pp. 86--109.
3.
M. Benzi, P. Boito, and N. Razouk, Decay properties of spectral projectors with applications to electronic structure, SIAM Rev., 55 (2013), pp. 3--64.
4.
E. G. Birgin, J. M. Martínez, L. Martínez, and G. B. Rocha, Sparse projected-gradient method as a linear-scaling low-memory alternative to diagonalization in self-consistent field electronic structure calculations, J. Chem. Theory Comput., 9 (2013), pp. 1043--1051.
5.
D. R. Bowler and T. Miyazaki, Calculations for millions of atoms with density functional theory: Linear scaling shows its potential, J. Phys. Condens. Matter, 22 (2010), 074207.
6.
D. R. Bowler and T. Miyazaki, O(n) methods in electronic structure calculations, Rep. Progr. Phys., 75 (2012), pp. 036503--036546.
7.
C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19 (1965), pp. 577--593.
8.
M. J. Cawkwell and A. M. N. Niklasson, Energy conserving, linear scaling Born--Oppenheimer molecular dynamics, J. Chem. Phys., 137 (2012), 134105.
9.
M. J. Cawkwell, E. J. Sanville, S. M. Mniszewski, and A. M. N. Niklasson, Computing the density matrix in electronic structure theory on graphics processing units, J. Chem. Theory Comput., 8 (2012), pp. 4094--4101.
10.
M. Challacombe, A simplified density matrix minimization for linear scaling self-consistent field theory, J. Chem. Phys., 110 (1999), pp. 2332--2342.
11.
M. S. Daw, Model for energetics of solids based on the density matrix, Phys. Rev. B, 47 (1993), pp. 10895--10898.
12.
R. M. Dreizler and K. U. Gross, Density-Functional Theory, Springer-Verlag, Berlin, 1990.
13.
M. Elstner, D. Poresag, G. Jungnickel, J. Elstner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, 58 (1998), pp. 7260--7268.
14.
H. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM J. Sci. Comput., 34 (2012), pp. A2220--A2246.
15.
M. Finnis, Interatomic Forces in Condensed Matter, Oxford University Press, Oxford, UK, 2003.
16.
M. Finnis, A. T. Paxton, M. Methfessel, and M. van Schilfgaarde, Crystal structures of zirconia from first principles and self-consistent tight binding, Phys. Rev. Lett., 81 (1998), pp. 5149--5152.
17.
T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Poresag, S. Suhai, and R. Scholz, A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology, Phys. Status Solidi B, 217 (2000), pp. 41--62.
18.
S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys., 71 (1999), pp. 1085--1123.
19.
S. Goedecker and L. Colombo, Efficient linear scaling algorithm for tight-binding molecular-dynamics, Phys. Rev. Lett., 73 (1994), pp. 122--125.
20.
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
21.
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B:864--B871.
22.
A. Holas, Transforms for idempotency purification of density matrices in linear-scaling electronic-structure calculations, Chem. Phys. Lett., 340 (2001), pp. 552--558.
23.
D. D. Johnson, Modified Broyden's method for accelerating convergence in self-consistent calculations, Phys. Rev. B, 38 (1988), 12807.
24.
J. Kim and Y. Jung, Accelerated purification using generalized nonpurifying intermediate functions for large-scale self-consistent field calculations, J. Chem. Theory Comput., 7 (2011), pp. 3853--3858.
25.
J. Kim, F. Mauri, and G. Galli, Total-energy global optimizations using nonorthogonal localized orbitals, Phys. Rev. B, 52 (1995), pp. 1640--1648.
26.
B. Kirchner, J. di Dio Philipp, and J. Hutter, Real-world predictions from ab initio molecular dynamics simulations, Top. Curr. Chem., 307 (2012), pp. 109--153.
27.
W. Kohn, Analytic properties of Bloch waves and Wannier functions, Phys. Rev., 115 (1959), pp. 809--821.
28.
W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms, Phys. Rev. Lett., 76 (1996), pp. 3168--3171.
29.
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965), pp. A1133--A1138.
30.
B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, Cambridge, UK, 2004.
31.
X.-P. Li, R. W. Nunes, and D. Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling, Phys. Rev. B, 47 (1993), pp. 10891--10894.
32.
W. Liang, C. Saravanan, Y. Shao, R. Baer, A. T. Bell, and M. Head-Gordon, Improved Fermi operator expansion methods for fast electronic structure calculations, J. Chem. Phys., 119 (2003), pp. 4117--4125.
33.
D. Marx and J. Hutter, Modern Methods and Algorithms of Quantum Chemistry, 2nd ed., J. Grotendorst, ed., John von Neumann Institute for Computing, Jülich, Germany, 2000.
34.
D. A. Mazziotti, Towards idempotent reduced density matrices via particle-hole duality: McWeeny's purification and beyond, Phys. Rev. E, 68 (2003), 066701.
35.
R. McWeeny, The density matrix in self-consistent field theory. I. Iterative construction of the density matrix, Proc. R. Soc. London Ser. A, 235 (1956), pp. 496--509.
36.
R. McWeeny, Some recent advances in density matrix theory, Rev. Mod. Phys., 32 (1960), pp. 335--369.
37.
A. M. N. Niklasson, Expansion algorithm for the density matrix, Phys. Rev. B, 66 (2002), 155115.
38.
A. M. N. Niklasson, Extended Born--Oppenheimer molecular dynamics, Phys. Rev. Lett., 100 (2008), 123004.
39.
A. M. N. Niklasson and M. J. Cawkwell, Fast method for quantum mechanical molecular dynamics, Phys. Rev. B, 86 (2012), 174308.
40.
A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J. Tymczak, E. Holmström, G. Zheng, and V. Weber, Time-reversible Born--Oppenheimer molecular dynamics with dissipation, J. Chem. Phys., 130 (2009), 214109.
41.
A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, Trace resetting density matrix purification in O(N) self-consistent-field theory, J. Chem. Phys., 118 (2003), pp. 8611--8620.
42.
A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, Time-reversible Born--Oppenheimer molecular dynamics, Phys. Rev. Lett., 97 (2006), 123001.
43.
A. Odell, A. Delin, B. Johansson, N. Bock, M. Challacombe, and A. M. N. Niklasson, Higher-order symplectic integration in Born--Oppenheimer molecular dynamics, J. Chem. Phys., 131 (2009), 244106.
44.
A. Odell, A. Delin, B. Johansson, M. J. Cawkwell, and A. M. N. Niklasson, Geometric integration in Born--Oppenheimer molecular dynamics, J. Chem. Phys., 135 (2011), 224105.
45.
P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin, Unconstrained minimization approach for electronic computations that scales linearly with system size, Phys. Rev. B, 48 (1993), pp. 14646--14649.
46.
A. H. R. Palser and D. E. Manolopoulos, Canonical purification of the density matrix in electronic-structure theory, Phys. Rev. B, 58 (1998), 12704.
47.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, UK, 1989.
48.
M. S. Paterson and L. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate matrix polynomials, SIAM J. Comput., 2 (1973), pp. 60--66.
49.
P. Pulay, Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett., 73 (1980), pp. 393--398.
50.
P. Pulay and G. Fogarasi, Fock matrix dynamics, Chem. Phys. Lett., 386 (2004), pp. 272--278.
51.
C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys., 23 (1951), pp. 69--89.
52.
E. H. Rubensson, Nonmonotonic recursive polynomial expansions for linear scaling calculation of the density matrix, J. Chem. Theory Comput., 7 (2011), pp. 1233--1236.
53.
E. H. Rubensson, Controlling errors in recursive Fermi--Dirac operator expansions with applications in electronic structure theory, SIAM J. Sci. Comput., 34 (2012), pp. B1--B23.
54.
E. H. Rubensson and E. Rudberg, Bringing about matrix sparsity in linear scaling electronic structure calculations, J. Comput. Chem., 32 (2011), pp. 1411--1423.
55.
E. H. Rubensson, E. Rudberg, and P. Sałek, Density matrix purification with rigorous error control, J. Chem. Phys., 128 (2008), 074106.
56.
E. H. Rubensson and S. Zahedi, Computation of interior eigenvalues in electronic structure calculations facilitated by density matrix purification, J. Chem. Phys., 128 (2008), 176101.
57.
E. Rudberg and E. H. Rubensson, Assessment of density matrix methods for linear scaling electronic structure calculations, J. Phys. Condens. Matter, 23 (2011), 075502.
58.
E. Sanville, N. Bock, W. M. Challacombe, A. M. N. Niklasson, M. J. Cawkwell, D. M. Dattelbaum, and S. Sheffield, Proceedings of the 14th International Detonation Symposium, Office of Naval Research, Arlington, VA, 2010, pp. 91--101.
59.
R. N. Silver and H. Röder, Densities of states of mega-dimensional Hamiltonian matrices, Internat. J. Modern Phys. C, 5 (1994), pp. 735--753.
60.
R. N. Silver, H. Röder, A. F. Voter, and J. D. Kress, Kernel polynomial approximations for densities of states and spectral functions, Int. J. Comput. Phys., 124 (1996), pp. 115--130.
61.
P. Steneteg, I. A. Abrikosov, V. Weber, and A. M. N. Niklasson, Wave function extended Lagrangian Born--Oppenheimer molecular dynamics, Phys. Rev. B, 82 (2010), 075110.
62.
G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, San Diego, CA, 1990.
63.
P. Suryanarayana, Optimized purification for density matrix calculation, Chem. Phys. Lett., 555 (2013), pp. 291--295.
64.
M. Tuckerman, Ab initio molecular dynamics: Basic concepts, current trends and novel applications, J. Phys. Condens. Matter, 50 (2002), R1297.
65.
J. VandeVondele, U. Borstnik, and J. Hutter, Linear scaling self-consistent field calculations with millions of atoms in the condensed phase, J. Chem. Theory Comput., 8 (2012), pp. 3565--3573.
66.
G. Zheng, S. Irle, and K. Morokuma, Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of c20-c86 fullerene isomers, Chem. Phys. Lett., 412 (2005), pp. 210--216.
67.
G. Zheng, A. M. N. Niklasson, and M. Karplus, Lagrangian formulation with dissipation of Born--Oppenheimer molecular dynamics using the density-functional tight-binding method, J. Chem. Phys., 135 (2011), 044122.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B147 - B170
ISSN (online): 1095-7197

History

Submitted: 1 March 2013
Accepted: 2 December 2013
Published online: 11 March 2014

Keywords

  1. Born--Oppenheimer molecular dynamics
  2. density functional theory
  3. density matrix purification
  4. Fermi operator expansion
  5. homo-lumo gap
  6. interior eigenvalues
  7. linear scaling electronic structure theory
  8. matrix functions
  9. nonmonotonic expansion
  10. recursive expansion
  11. scale-and-fold acceleration
  12. trace-correcting purification

MSC codes

  1. 65F15
  2. 65F60
  3. 70E55
  4. 81-08

Authors

Affiliations

Anders M. N. Niklasson

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media