Abstract

We describe a generating set for the variety of simple graphs that admit a $k$-ary near-unanimity (NU) polymorphism. The result follows from an analysis of NU polymorphisms of strongly bipartite digraphs, i.e., whose vertices are either a source or a sink. We show that the retraction problem for a strongly bipartite digraph ${\mathbb H}$ has finite duality if and only if ${\mathbb H}$ admits an NU polymorphism. This result allows the use of tree duals to generate the variety of digraphs admitting a $k$-NU polymorphism.

Keywords

  1. near-unanimity polymorphism
  2. graphs
  3. strongly bipartite digraphs
  4. finite duality

MSC codes

  1. Primary
  2. 05C75; Secondary
  3. 08B05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H.-J. Bandelt, Graphs with edge-preserving majority functions, Discrete Math., 103 (1992), pp. 1--5.
2.
L. Barto and M. Kozik, private communication, 2011.
3.
A. Bulatov, H-coloring dichotomy revisited, Theoret. Comput. Sci., 349 (2005), pp. 31--39.
4.
A. Bulatov, A. Krokhin, and B. Larose, Dualities for constraint satisfaction problems, in Complexity of Constraints, Lecture Notes in Comput. Sci. 5250, Springer, New York, 2008, pp. 93--124.
5.
T. Feder, P. Hell, B. Larose, C. Loten, M. Siggers, and C. Tardif, Graphs admitting $k$-NU operations. Part 1: The reflexive case, SIAM J. Discrete Math. 27 (2013) pp. 1639--2166.
6.
T. Feder and M. Y. Vardi, Monotone monadic SNP and constraint satisfaction, in Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), San Diego, CA, 1993, pp. 612--622.
7.
P. Hell, Rétractions de graphes, Ph.D. thesis, Université de Montréal, 1972.
8.
B. Larose, Graphs Admitting an NU Polymorphism, manuscript, 1998.
9.
B. Larose and A. Lema\^ \i tre, List-Homomorphism Problems on Graphs and Arc-Consistency, Discrete Math., 313 (2013) pp. 2525--2537.
10.
B. Larose, C. Loten, and C. Tardif, A characterisation of first-order constraint satisfaction problems, Logical Methods Comput. Sci., 3 (2007).
11.
B. Larose, C. Loten, and L. Z\a'adori, A polynomial-time algorithm to recognise near-unanimity graphs, J. Algorithms, 55 (2005), pp. 177--191.
12.
C. Carvalho, B. Larose, and M. Siggers, Absolute retracts and NU polymorphisms, in preparation.
13.
B. Larose and L. Zádori, Algebraic properties and dismantlability of finite posets, Discrete Math., 163 (1997), pp. 89--99.
14.
M. Mároti, private communication, 2011.
15.
J. Nešetřil and C. Tardif, Duality theorems for finite structures (characterising gaps and good characterisations), J. Combin. Theory Ser. B, 80 (2000), pp. 80--97.
16.
J. Nešetřil and C. Tardif, Short answers to exponentially long questions: Extremal aspects of homomorphism duality, SIAM J. Discrete Math., 19 (2005), pp. 914--920.
17.
A. Szendrei, Clones in Universal Algebra, Seminaires de Mathematiques Superieures, Université de Montréal, 1986.
18.
L. Zádori, Relational sets and categorical equivalence of algebras, Internat. J. Algebra Comput., 7 (1997), pp. 561--576.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 817 - 834
ISSN (online): 1095-7146

History

Submitted: 28 March 2013
Accepted: 31 January 2014
Published online: 3 June 2014

Keywords

  1. near-unanimity polymorphism
  2. graphs
  3. strongly bipartite digraphs
  4. finite duality

MSC codes

  1. Primary
  2. 05C75; Secondary
  3. 08B05

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media