Abstract

A rigorous convergence analysis of the Strang splitting algorithm for Vlasov-type equations in the setting of abstract evolution equations is provided. It is shown that, under suitable assumptions, the convergence is of second order in the time step $\tau$. As an example, it is verified that the Vlasov--Poisson equations in 1+1 dimensions fit into the framework of this analysis. Further, numerical experiments for the latter case are presented.

Keywords

  1. Strang splitting
  2. abstract evolution equations
  3. convergence analysis
  4. Vlasov--Poisson equations
  5. Vlasov-type equations

MSC codes

  1. 65M12
  2. 82D10
  3. 65L05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
E.A. Belli, Studies of Numerical Algorithms for Gyrokinetics and the Effects of Shaping on Plasma Turbulence, Ph.D. thesis, Princeton University, Princeton, NJ, 2006.
2.
N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov--Poisson system, SIAM J. Numer. Anal., 42 (2005), pp. 350--382.
3.
N. Besse, Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the one-dimensional Vlasov--Poisson system, SIAM J. Numer. Anal., 46 (2008), pp. 639--670.
4.
M. Bostan and N. Crouseilles, Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell system for laser-plasma interaction, Numer. Math., 112 (2009), pp. 169--195.
5.
C.Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), pp. 330--351.
6.
N. Crouseilles, E. Faou, and M. Mehrenberger, High Order Runge-Kutta-Nyström Splitting Methods for the Vlasov-Poisson Equation, http://hal.inria.fr/inria-00633934/PDF/ cfm.pdf (19 October 2011).
7.
M.R. Fahey and J. Candy, GYRO: A 5-d gyrokinetic-Maxwell solver, in Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, IEEE Computer Society, Piscataway, NJ, 2008, p. 26.
8.
F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys. Comm., 150 (2003), pp. 247--266.
9.
R.T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996.
10.
T.S. Hahm, L. Wang, and J. Madsen, Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence, Phys. Plasmas, 16 (2009), 022305.
11.
E. Hansen and A. Ostermann, Dimension splitting for evolution equations, Numer. Math., 108 (2008), pp. 557--570.
12.
R.E. Heath, I.M. Gamba, P.J. Morrison, and C. Michler, A discontinuous Galerkin method for the Vlasov-Poisson system, J. Comput. Phys., 231 (2012), pp. 1140--1174.
13.
H. Holden, C. Lubich, and N.H. Risebro, Operator splitting for partial differential equations with Burgers nonlinearity, Math. Comp., 82 (2013), pp. 173--185.
14.
T. Jahnke and C. Lubich, Error bounds for exponential operator splittings, BIT, 40 (2000), pp. 735--744.
15.
C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp., 77 (2008), pp. 2141--2153.
16.
A. Mangeney, F. Califano, C. Cavazzoni, and P. Travnicek, A numerical scheme for the integration of the Vlasov-Maxwell system of equations, J. Comput. Phys., 179 (2002), pp. 495--538.
17.
T. Respaud and E. Sonnendrücker, Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations, Numer. Math., 118 (2011), pp. 329--366.
18.
J.A. Rossmanith and D.C. Seal, A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations, J. Comput. Phys., 230 (2011), pp. 6203--6232.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 140 - 155
ISSN (online): 1095-7170

History

Submitted: 26 April 2013
Accepted: 11 October 2013
Published online: 16 January 2014

Keywords

  1. Strang splitting
  2. abstract evolution equations
  3. convergence analysis
  4. Vlasov--Poisson equations
  5. Vlasov-type equations

MSC codes

  1. 65M12
  2. 82D10
  3. 65L05

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media