SPECIAL SECTION

Fast Methods for Denoising Matrix Completion Formulations, with Applications to Robust Seismic Data Interpolation

Abstract

Recent SVD-free matrix factorization formulations have enabled rank minimization for systems with millions of rows and columns, paving the way for matrix completion in extremely large-scale applications, such as seismic data interpolation. In this paper, we consider matrix completion formulations designed to hit a target data-fitting error level provided by the user, and we propose an algorithm called LR-BPDN that is able to exploit factorized formulations to solve the corresponding optimization problem. Since practitioners typically have strong prior knowledge about target error level, this innovation makes it easy to apply the algorithm in practice, leaving only the factor rank to be determined. Within the established framework, we propose two extensions that are highly relevant to solving practical challenges of data interpolation. First, we propose a weighted extension that allows known subspace information to improve the results of matrix completion formulations. We show how this weighting can be used in the context of frequency continuation, an essential aspect to seismic data interpolation. Second, we propose matrix completion formulations that are robust to large measurement errors in the available data. We illustrate the advantages of LR-BPDN on collaborative filtering problems using the MovieLens 1M and 10M and Netflix 100M datasets. Then we use the new method, along with its robust and subspace reweighted extensions, to obtain high-quality reconstructions for large-scale seismic interpolation problems with real data, even in the presence of data contamination.

Keywords

  1. matrix completion
  2. factorized formulations
  3. seismic trace interpolation
  4. variational optimization
  5. robust statistics

MSC codes

  1. 65K10
  2. 90C06
  3. 62F35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Y. Aravkin, J. V. Burke, and M. P. Friedlander, Variational properties of value functions, SIAM J. Optim., 23 (2013), pp. 1689--1717.
2.
A. Y. Aravkin, M. P. Friedlander, F. Herrmann, and T. van Leeuwen, Robust inversion, dimensionality reduction, and randomized sampling, Math. Program., 134 (2012), pp. 101--125.
3.
S. R. Becker, E. J. Candes, and M. C. Grant, Templates for convex cone problems with applications to sparse signal recovery, Math. Program. Comput., 3 (2011), pp. 165--218.
4.
S. Burer and R. D. C. Monteiro, Local minima and convergence in low-rank semidefinite programming, Math. Program., 103 (2005), pp. 427--444.
5.
E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, J. ACM, 58 (3) (2011), 11.
6.
E. J. Candès, T. Strohmer, and V. Voroninski, Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming, Comm. Pure Appl. Math., 66 (2013), pp. 1241--1274.
7.
E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406--5425.
8.
C. Da Silva and F. J. Herrmann, Hierarchical Tucker tensor optimization: Applications to 4D seismic data interpolation, in 75th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2013, 2013.
9.
L. Demanet, Curvelets, Wave Atoms, and Wave Equations, Ph.D. thesis, California Institute of Technology, 2006.
10.
D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289--1306.
11.
M. Fazel, Matrix Rank Minimization with Applications, Ph.D. thesis, Stanford University, CA, 2002.
12.
M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Selected Topics Signal Process., 1 (2007), pp. 586 --597.
13.
M. Friedlander, H. Mansour, R. Saab, and O. Yilmaz, Recovering compressively sampled signals using partial support information, IEEE Trans. Inform. Theory, 58 (2012), pp. 1122--1134 .
14.
S. Funk, Netflix Update: Try This at Home, http://sifter.org/$\sim$simon/journal/20061211.html, 2006.
15.
R. Giryes, M. Elad, and Y. C. Eldar, The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods, preprint, CoRR, \burlalthttp://arxiv.org/abs/1003.3985abs/1003.3985 (2010).
16.
D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Trans. Inform. Theory, 57 (2011), pp. 1548--1566.
17.
F. J. Herrmann, M. P. Friedlander, and O. Yilmaz, Fighting the curse of dimensionality: Compressive sensing in exploration seismology, IEEE Signal Process. Mag., 29 (2012), pp. 88--100.
18.
F. J. Herrmann, M. P. Friedlander, and O. Yilmaz, Fighting the curse of dimensionality: Compressive sensing in exploration seismology, IEEE Signal Process. Mag., 29 (2012), pp. 88--100.
19.
F. J. Herrmann and G. Hennenfent, Non-parametric seismic data recovery with curvelet frames, Geophys. J. Internat., 173 (2008), pp. 233--248.
20.
P. J. Huber, Robust Statistics, Wiley, 1981.
21.
P. Jain, R. Meka, and I. Dhillon, Guaranteed rank minimization via singular value projection, in Advances in Neural Information Processing Systems 23 (NIPS 2010), J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, eds., 2010, pp. 937--945.
22.
P. Jain, P. Netrapalli, and S. Sanghavi, Low-rank matrix completion using alternating minimization, in Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC '13), ACM, New York, 2013, pp. 665--674.
23.
K. L. Lange, R. J. A. Little, and J. M. G. Taylor, Robust statistical modeling using the $t$ distribution, J. Amer. Statist. Assoc., 84 (1989), pp. 881--896.
24.
J. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and J. Tropp, Practical large-scale optimization for max-norm regularization, in Advances in Neural Information Processing Systems 23 (NIPS 2010), J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, eds., 2010, pp. 1297--1305.
25.
Z. Lin and S. Wei, A Block Lanczos with Warm Start Technique for Accelerating Nuclear Norm Minimization Algorithms, preprint, CoRR, http://arxiv.org/abs/1012.0365abs/1012.0365 (2010).
26.
J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Process., 17 (2008), pp. 53--69.
27.
H. Mansour, F. J. Herrmann, and O. Yilmaz, Improved wavefield reconstruction from randomized sampling via weighted one-norm minimization, Geophysics, submitted (2012).
28.
H. Mansour, R. Saab, P. Nasiopoulos, and R. Ward, Color image desaturation using sparse reconstruction, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010, pp. 778--781.
29.
H. Mansour, H. Wason, T. T. Y. Lin, and F. J. Herrmann, Randomized marine acquisition with compressive sampling matrices, Geophys. Prospecting, 60 (2012), pp. 648--662.
30.
R. A. Maronna, D. Martin, and Yohai, Robust Statistics, Wiley Series in Probability and Statistics, Wiley, 2006.
31.
R. Neelamani, C. E. Krohn, J. R. Krebs, J. K. Romberg, M. Deffenbaugh, and J. E. Anderson, Efficient seismic forward modeling using simultaneous random sources and sparsity, Geophys., 75 (2010), pp. WB15--WB27.
32.
V. Oropeza and M. Sacchi, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis, Geophys., 76 (2011), pp. V25--V32.
33.
B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471--501.
34.
B. Recht and C. Ré, Parallel stochastic gradient algorithms for large-scale matrix completion, Math. Program. Comput., 5 (2013), pp. 201--226.
35.
J. D. M. Rennie and N. Srebro, Fast maximum margin matrix factorization for collaborative prediction, in Proceedings of the 22nd International Conference on Machine Learning (ICML '05), 2005, pp. 713--719.
36.
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer, 1998.
37.
M. D. Sacchi, T. J. Ulrych, and C. J. Walker, Interpolation and extrapolation using a high-resolution discrete fourier transform, IEEE Trans. Signal Process., 46 (1998), pp. 31--38.
38.
J.-L. Starck, M. Elad, and D. Donoho, Image decomposition via the combination of sparse representation and a variational approach, IEEE Trans. Image Process., 14 (2005), pp. 1570--1582.
39.
E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput., 31 (2008), pp. 890--912.
40.
E. van den Berg and M. P. Friedlander, Sparse optimization with least-squares constraints, SIAM J. Optim., 21 (2011), pp. 1201--1229.
41.
B. Vandereycken, Low-rank matrix completion by Riemannian optimization, SIAM J. Optim., 23 (2013), pp. 1214--1236.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S237 - S266
ISSN (online): 1095-7197

History

Submitted: 1 May 2013
Accepted: 17 July 2014
Published online: 30 October 2014

Keywords

  1. matrix completion
  2. factorized formulations
  3. seismic trace interpolation
  4. variational optimization
  5. robust statistics

MSC codes

  1. 65K10
  2. 90C06
  3. 62F35

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media