Abstract

We consider variational inequalities with different trial and test spaces and a possibly noncoercive bilinear form. Well-posedness is shown under general conditions that are, e.g., valid for the space-time variational formulation of parabolic variational inequalities. Moreover, we prove an estimate for the error of a Petrov--Galerkin approximation in terms of the residual. For parabolic variational inequalities the arising estimate is independent of the final time.

Keywords

  1. variational inequalities
  2. parabolic problems
  3. error estimates

MSC codes

  1. 35K85
  2. 49J40
  3. 65M15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
W. Arendt and K. Urban, Partielle Differenzialgleichungen, Spektrum Akademischer Verlag, Heidelberg, 2010.
2.
C. Bernardi, C. Canuto, and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal., 25 (1988), pp. 1237--1271.
3.
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5, Evolution Problems I, Springer-Verlag, Berlin, 1992.
4.
L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, AMS, Providence, RI, 2010.
5.
H.-G. Roos and C. Grossmann, Numerische Behandlung partieller Differentialgleichungen, 3rd ed., Teubner-Verlag, Stuttgart, 2005.
6.
B. Haasdonk, J. Salomon, and B. Wohlmuth, A Reduced Basis Method for Parametrized Variational Inequalities, SIAM J. Numer. Anal., 50 (2012), pp. 2656--2676.
7.
B. Haasdonk, J. Salomon, and B. Wohlmuth, A Reduced Basis Method for Parameterized Variational Inequalities, SimTech preprint 2011--17, University of Stuttgart, 2011.
8.
B. Haasdonk, J. Salomon, and B. Wohlmuth, A Reduced Basis Method for the Simulation of American Options, arXiv:1201.3289, 2012.
9.
K. Ito and K. Kunisch, Parabolic variational inequalities: The Lagrange multiplier approach, J. Math. Pures Appl. (9), 85 (2006), pp. 415--449.
10.
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, SIAM, Philadelphia, 2000.
11.
J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493--519.
12.
J. Nečas, Sur une méthode pour resoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat. III. Ser. 16 (1962), pp. 305--326.
13.
R. H. Nochetto, K. G. Siebert, and A. Veeser, Theory of adaptive finite element methods: An introduction, in Multiscale, Nonlinear and Adaptive Approximation, R. DeVore and A. Kunoth, eds., Springer, Berlin, 2009, pp. 409--542.
14.
G. Rozza and A. T. Patera, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations, Massachusetts Institute of Technology, Cambridge, MA, 2006; also available online from http://augustine.mit.eduhttp://augustine.mit.edu.
15.
M. Rudd and K. Schmitt, Variational inequalities of elliptic and parabolic type, Taiwanese J. Math., 6 (2002), pp. 287--322.
16.
C. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comp., 78 (2009), pp. 1293--1318.
17.
K. Urban and A. T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations, C. R. Acad. Sci. Paris Ser. I, 350 (2012), pp. 203--207.
18.
K. Urban and A. T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comput., 83 (2014), pp. 1599--1615.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2250 - 2271
ISSN (online): 1095-7170

History

Submitted: 17 June 2013
Accepted: 30 June 2014
Published online: 11 September 2014

Keywords

  1. variational inequalities
  2. parabolic problems
  3. error estimates

MSC codes

  1. 35K85
  2. 49J40
  3. 65M15

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media