Sharp Estimates of the One-Dimensional Boundary Control Cost for Parabolic Systems and Application to the $N$-Dimensional Boundary Null Controllability in Cylindrical Domains

Abstract

In this paper we consider the boundary null controllability of a system of $n$ parabolic equations on domains of the form $\Omega =(0,\pi)\times \Omega_2$ with $\Omega_2$ a smooth domain of $\mathbb{R}^{N-1}$, $N>1$. When the control is exerted on $\{0\}\times \omega_2$ with $\omega_2\subset \Omega_2$, we obtain a necessary and sufficient condition that completely characterizes the null controllability. This result is obtained through the Lebeau--Robbiano strategy and requires an upper bound of the cost of the one-dimensional boundary null control on $(0,\pi)$. The latter is obtained using the moment method and it is shown to be bounded by $Ce^{C/T}$ when $T$ goes to $0^+$.

Keywords

  1. parabolic systems
  2. boundary controllability
  3. biorthogonal families
  4. Kalman rank condition

MSC codes

  1. 93B05
  2. 93C05
  3. 35K05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Alabau-Boussouira, Controllability of cascade coupled systems of multi-dimensional evolution PDEs by a reduced number of controls, C. R. Acad. Sci. Paris Sér. I Math., 350 (2012), pp. 577--582.
2.
F. Alabau-Boussouira and M. Léautaud, Indirect stabilization of locally coupled wave-type systems, ESAIM Control Optim. Calc. Var., 18 (2012), pp. 548--582.
3.
F. Ammar-Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differential Equations Appl., 1 (2009), pp. 139--151.
4.
F. Ammar-Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equations, 9 (2009), pp. 267--291.
5.
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl. (9), 96 (2011), pp. 555--590.
6.
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa, Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Related Fields, 1 (2011), pp. 267--306.
7.
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa, A new relation between the condensation index of complex sequences and the null controllability of parabolic systems, C. R. Acad. Sci. Paris Sér. I Math., 351 (2013), pp. 743--746.
8.
F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, and L. de Teresa, Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences, J. Funct. Anal., 267 (2014), pp. 2077--2151.
9.
A. Benabdallah, Y. Dermenjian, and J. Le Rousseau, On the controllability of linear parabolic equations with an arbitrary control location for stratified media, C. R. Acad. Sci. Paris Sér. I Math., 344 (2007), pp. 357--362.
10.
A. Benabdallah and M. G. Naso, Null controllability of a thermoelastic plate, Abstr. Appl. Anal., 7 (2002), pp. 585--599.
11.
S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Control Optim., 15 (1977), pp. 185--220.
12.
H. O. Fattorini, Boundary control of temperature distributions in a parallelepipedon, SIAM J. Control, 13 (1975), pp. 1--13.
13.
E. Fernández-Cara, M. González-Burgos, and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal., 259 (2010), pp. 1720--1758.
14.
E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), pp. 465--514.
15.
H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43 (1971), pp. 272--292.
16.
H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974), pp. 45--69.
17.
E. N. Güichal, A lower bound of the norm of the control operator for the heat equation, J. Math. Anal. Appl., 110 (1985), pp. 519--527.
18.
R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical Control Theory, McGraw-Hill, New York, 1969.
19.
W. A. J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc., 157 (1971), pp. 23--37.
20.
J. Le Rousseau, Représentation Microlocale de Solutions de Systèmes Hyperboliques, Application à l'Imagerie, et Contributions au Contrôle et aux Problèmes Inverses pour des Equations Paraboliques, Habilitation thesis, Aix-Marseille Université, http://hal.archives-ouvertes.fr/tel-00201887/fr/ (2007).
21.
G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), pp. 335--356.
22.
G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Ration. Mech. Anal., 141 (1998), pp. 297--329.
23.
L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time, J. Differential Equations, 204 (2004), pp. 202--226.
24.
L. Miller, On the null-controllability of the heat equation in unbounded domains, Bull. Sci. Math., 129 (2005), pp. 175--185.
25.
G. Olive, Boundary approximate controllability of some linear parabolic systems, Evol. Equations Control Theory, 3 (2014), pp. 167--189.
26.
R. M. Redheffer, Completeness of sets of complex exponentials, Adv. Math., 24 (1977), pp. 1--62.
27.
W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.
28.
T. I. Seidman, Two results on exact boundary control of parabolic equations, Appl Math Optim., 11 (1984), pp. 145--152.
29.
G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations, ESAIM Control Optim. Calc. Var., 17 (2011), pp. 1088--1100.
30.
L. de Teresa, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, 25 (2000), pp. 39--72.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 2970 - 3001
ISSN (online): 1095-7138

History

Submitted: 18 July 2013
Accepted: 9 July 2014
Published online: 25 September 2014

Keywords

  1. parabolic systems
  2. boundary controllability
  3. biorthogonal families
  4. Kalman rank condition

MSC codes

  1. 93B05
  2. 93C05
  3. 35K05

Authors

Affiliations

Manuel González-Burgos

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media