Abstract

We investigate the Robinson--Schensted--Knuth algorithm (RSK) and Schützenberger's jeu de taquin in the infinite setup. We show that the recording tableau in RSK defines an isomorphism of the following two dynamical systems: (i) a sequence of independent and identically distributed random letters equipped with Bernoulli shift, and (ii) a random infinite Young tableau (with the distribution given by Vershik--Kerov measure, corresponding to some Thoma character of the infinite symmetric group) equipped with jeu de taquin transformation. As a special case we recover the results on noncolliding random walks and multidimensional Pitman transform.

Keywords

  1. asymptotic representation theory of symmetric groups
  2. jeu de taquin
  3. Robinson--Schensted--Knuth algorithm
  4. Young tableau
  5. Vershik--Kerov measures
  6. Thoma characters of the infinite symmetric group
  7. dynamical system
  8. isomorphism of measure-preserving systems

MSC codes

  1. Primary
  2. 60C05; Secondary
  3. 05E10
  4. 20C30
  5. 20C32
  6. 37A05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math., 64 (1987), pp. 118--175.
2.
A. Berele and J. B. Remmel, Hook flag characters and their combinatorics, J. Pure Appl. Algebra, 35 (1985), pp. 225--245.
3.
J. Fulman, Applications of symmetric functions to cycle and increasing subsequence structure after shuffles, J. Algebraic Combin., 16 (2002), pp. 165--194.
4.
W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, London Math. Soc. Stud. Texts 35, Cambridge University Press, Cambridge, UK, 1997.
5.
S. V. Kerov and A. M. Vershik, The characters of the infinite symmetric group and probability properties of the Robinson--Schensted--Knuth algorithm, SIAM J. Algebraic Discrete Methods, 7 (1986), pp. 116--124.
6.
D. E. Knuth, The Art of Computer Programming. Volume 3. Sorting and Searching, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley, Reading, MA, 1973.
7.
B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Adv. in Math., 26 (1977), pp. 206--222.
8.
N. O'Connell, A path-transformation for random walks and the Robinson-Schensted correspondence, Trans. Amer. Math. Soc., 355 (2003), pp. 3669--3697.
9.
N. O'Connell and M. Yor, A representation for non-colliding random walks, Electron. Comm. Probab., 7 (2002), pp. 1--12.
10.
D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge University Press, Cambridge, UK, to appear; manuscript available online from http://www. math.ucdavis.edu/$\sim$romik/lisbook/, 2013.
11.
D. Romik and P. Śniady, Jeu de taquin dynamics on infinite Young tableaux and second class particles, Ann. Probab., to appear; preprint, arXiv:1111.0575v2, 2011.
12.
B. E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd ed., Grad. Texts in Math. 203, Springer-Verlag, New York, 2001.
13.
M. P. Schützenberger, Quelques remarques sur une construction de Schensted, Math. Scand., 12 (1963), pp. 117--128.
14.
M.-P. Schützenberger, La correspondance de Robinson, in Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Lecture Notes in Math. 579, Springer-Verlag, Berlin, 1977, pp. 59--113.
15.
C. E. Silva, Invitation to Ergodic Theory, Stud. Math. Libr. 42, AMS, Providence, RI, 2008.
16.
R. P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Stud. Adv. Math. 62, Cambridge University Press, Cambridge, UK, 1999.
17.
E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math. Z., 85 (1964), pp. 40--61.
18.
A. M. Vershik and S. V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux, Soviet Math. Dokl., 18 (1977), pp. 527--531.
19.
A. M. Vershik and S. V. Kerov, Asymptotic theory of the characters of a symmetric group, Funktsional. Anal. i Prilozhen., 15 (1981), pp. 15--27, 96.
20.
A. M. Vershik and S. V. Kerov, Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group, Funct. Anal. Appl., 19 (1985), pp. 21--31.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 598 - 630
ISSN (online): 1095-7146

History

Submitted: 22 July 2013
Accepted: 23 January 2014
Published online: 8 April 2014

Keywords

  1. asymptotic representation theory of symmetric groups
  2. jeu de taquin
  3. Robinson--Schensted--Knuth algorithm
  4. Young tableau
  5. Vershik--Kerov measures
  6. Thoma characters of the infinite symmetric group
  7. dynamical system
  8. isomorphism of measure-preserving systems

MSC codes

  1. Primary
  2. 60C05; Secondary
  3. 05E10
  4. 20C30
  5. 20C32
  6. 37A05

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media