Abstract

Let $f(z)$ be an analytic or meromorphic function in the closed unit disk sampled at the $n$th roots of unity. Based on these data, how can we approximately evaluate $f(z)$ or $f^{(m)}(z)$ at a point $z$ in the disk? How can we calculate the zeros or poles of $f$ in the disk? These questions exhibit in the purest form certain algorithmic issues that arise across computational science in areas including integral equations, partial differential equations, and large-scale linear algebra. We analyze some of the possibilities and emphasize the distinction between algorithms based on polynomial or rational interpolation and those based on trapezoidal rule approximations of Cauchy integrals. We then show how these developments apply to the problem of computing the eigenvalues in the disk of a matrix of large dimension. Finally we highlight the power of rational in comparison with polynomial approximations for some of these problems.

Keywords

  1. polynomial interpolation
  2. barycentric formula
  3. Cauchy integral formula
  4. trapezoidal rule
  5. rational approximation
  6. eigenvalues
  7. roots of unity
  8. FEAST
  9. RATDISK

MSC codes

  1. 41A10
  2. 41A20
  3. 65E05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
V. Adamjan, D. Arov, and M. Krein, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur--Takagi problem, Math. USSR Sb., 15 (1971), pp. 31--73.
2.
A. Amiraslani, New Algorithms for Matrices, Polynomials, and Matrix Polynomials, Ph.D. dissertation, University of Western Ontario, 2006.
3.
E. G. Anastasselou, A formal comparison of the Delves--Lyness and Burniston--Siewert methods for locating the zeros of analytic functions, IMA J. Numer. Anal., 6 (1986), pp. 337--341.
4.
A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia, 2005.
5.
J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura, A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Lett., 1 (2009), pp. 52--55.
6.
A. H. Barnett and T. Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains, J. Comput. Phys., 227 (2008), pp. 7003--7026.
7.
B. Beckermann, G. H. Golub, and G. Labahn, On the numerical condition of a generalized Hankel eigenvalue problem, Numer. Math., 106 (2007), pp. 41--68.
8.
M. Benzi, P. Boito, and N. Razouk, Decay properties of spectral projectors with applications to electronic structure, SIAM Rev., 55 (2013), pp. 3--64.
9.
J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), pp. 501--517.
10.
W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra Appl., 436 (2012), 3839--3863.
11.
F. Bornemann, Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals, Found. Comput. Math., 11 (2011), pp. 1--63.
12.
J. P. Boyd, Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles, SIAM, Philadelphia, 2014.
13.
A. Bunse-Gerstner, D. Kubalińska, G. Vossen, and D. Wilczek, $h_2$-norm optimal model reduction for large scale discrete dynamical MIMO systems, J. Comput. Appl. Math., 233 (2010), pp. 1202--1216.
14.
E. E. Burniston and C. E. Siewert, The use of Riemann problems in solving a class of transcendental equations, Proc. Cambridge Phil. Soc., 73 (1973), pp. 111--118.
15.
R. Corless, Generalized companion matrices for the Lagrange basis, in Proceedings of EACA, 2004, pp. 317--322.
16.
J. H. Curtiss, Interpolation by harmonic polynomials, J. SIAM, 10 (1962), pp. 709--736.
17.
P. J. Davis, On the numerical integration of periodic analytic functions, in R. E. Langer, ed., On Numerical Integration: Proceedings of a Symposium, Madison, April $21$--$23$, $1958$, University of Wisconsin, 1959, pp. 45--59.
18.
L. M. Delves and J. N. Lyness, A numerical method for locating the zeros of an analytic function, Math. Comput., 21 (1967), pp. 543--560.
19.
A. Draux, Formal orthogonal polynomials revisited. Applications, Numer. Algorithms, 11 (1996), pp. 143--158.
20.
T. A. Driscoll and B. Fornberg, A Padé-based algorithm for overcoming the Gibbs phenomenon, Numer. Algorithms, 26 (2001), pp. 77--92.
21.
M. Dupuy, Le calcul numérique des fonctions par l'interpolation barycentrique, C. R. Acad. Sci., 226 (1948), 158--159.
22.
Ö. Eg͂eciog͂lu and Ç. Koç, A fast algorithm for rational interpolation via orthogonal polynomials, Math. Comp., 53 (1989), pp. 249--264.
23.
G. E. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific, Singapore, 2007.
24.
L. Fejér, Interpolation und konforme Abbildung, Göttinger Nachrichten (1918), pp. 319--331.
25.
M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), pp. 315--331.
26.
B. Fornberg and N. Flyer, A Primer on Radial Basis Functions with Applications to the Geosciences, SIAM, to appear.
27.
B. Fornberg, Numerical differentiation of analytic functions, ACM Trans. Math. Software, 7 (1981), pp. 512--526.
28.
B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl., 48 (2004), pp. 853--867.
29.
S. Fortune, Polynomial root finding using iterated eigenvalue computation, in Proceedings of the International Symposium on Symbolic and Algebrica Computation, ACM, 2001, pp. 121--128.
30.
B. Gavin and E. Polizzi, Non-linear-eigensolver-based alternative to traditional SCF methods, J. Chem. Phys., 138 (2013), pp. 1--8.
31.
K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their $L^\infty$-error bounds, Internat. J. Control, 39 (1984), pp. 1115--1193.
32.
S. Goedecker, Linear scaling electronic structure methods, Rev. Modern Phys., 71 (1999), pp. 1085--1123.
33.
P. Gonnet, R. Pachón, and L. N. Trefethen, Robust rational interpolation and least-squares, Electron. Trans. Numer. Anal., 38 (2011), pp. 146--167.
34.
S. Gugercin, A. C. Antoulas, and C. Beattie, ${\cal H}_2$ model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609--638.
35.
M. H. Gutknecht, Numerical conformal mapping methods based on function conjugation, J. Comput. Appl. Math, 14 (1986), pp. 31--77.
36.
N. Hale, N. J. Higham, and L. N. Trefethen, Computing $A^\alpha$, $\log(A)$, and related matrix functions by contour integrals, SIAM J. Numer. Anal., 46 (2008), pp. 2505--2523.
37.
J. Helsing and R. Ojala, On the evaluation of layer potentials close to their sources, J. Comput. Phys., 227 (2008), pp. 2899--2921.
38.
P. Henrici, Fast Fourier methods in complex analysis, SIAM Rev., 21 (1979), pp. 481--527.
39.
P. Henrici, Essentials of Numerical Analysis with Pocket Calculator Demonstrations, Wiley, New York, 1982.
40.
N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 24 (2004), pp. 547--556.
41.
E. Hlawka, Interpolation analytischer Funktionen auf dem Einheitskreis, in Number Theory and Analysis, P. Turán, ed., Plenum, New York, 1969, pp. 99--118.
42.
T. Ikegami and T. Sakurai, Contour integral eigensolver for non-Hermitian systems: A Rayleigh--Ritz-type approach, Taiwan J. Math., 14 (2010), pp. 825--837.
43.
T. Ikegami, T. Sakurai, and U. Nagashima, A filter diagonalization for generalized eigenvalue problems based on the Sakurai--Sugiura projection method, J. Comput. Appl. Math., 223 (2010), pp. 1927--1936.
44.
N. I. Ioakimidis, A modification of the classical quadrature method for locating zeros of analytic functions, BIT, 25 (1985), pp. 681--686.
45.
N. I. Ioakimidis, K. E. Papadakis, and E. A. Perdios, Numerical evaluation of analytic functions by Cauchy's theorem, BIT, 31 (1991), pp. 276--285.
46.
D. Jackson, Roots and singular points of semi-analytic functions, Ann. of Math., 19 (1917), pp. 142--151.
47.
C. G. J. Jacobi, Disquisitiones Analyticae de Fractionibus Simplicibus, Dissertation, Berlin, 1825.
48.
C. G. J. Jacobi, Über die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function, J. Reine Angew. Math., 30 (1846), pp. 127--156.
49.
R. Jentzsch, Untersuchungen zur Theorie Analytischer Funktionen, Dissertation, Berlin, 1914.
50.
E. Kamgnia and B. Philippe, Counting eignevalues in domains of the complex field, Electron. Trans. Numer. Anal., 40 (2013), pp. 1--16.
51.
A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26 (2005), pp. 1214--1233.
52.
A. Klöckner, A. Barnett, L. Greengard, and M. O'Neil, Quadrature by expansion: A new method for the evaluation of layer potentials, J. Comput. Phys., 252 (2013), pp. 332--349.
53.
L. Krämer, E. Di Napoli, M. Galgon, B. Lang, and P. Bientinesi, Dissecting the FEAST algorithm for generalized eigenproblems, J. Comput. Appl. Math., 244 (2013), pp. 1--9.
54.
P. Kravanja, T. Sakurai, and M. Van Barel, On locating clusters of zeros of analytic functions, BIT, 39 (1999), pp. 646--682.
55.
P. Kravanja and M. Van Barel, A derivative-free algorithm for computing zeros of analytic functions, Computing, 63 (1999), pp. 69--91.
56.
P. Kravanja and M. Van Barel, Computing the Zeros of Analytic Functions, Lecture Notes in Math. 1727, Springer, New York, 2000.
57.
S. E. Laux, Solving complex band structure problems with the FEAST eigenvalue algorithm, Phys. Rev. B, 86 (2012), pp. 075103:1--10.
58.
A. R. Levin, D. Zhang, and E. Polizzi, FEAST fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem, Comput. Phys. Comm., 183 (2012), pp. 2370--2375.
59.
T.-Y. Li, On locating all zeros of an analytic function within a bounded domain by a revised Delves/Lyness method, SIAM J. Numer. Anal., 20 (1983), pp. 865--871.
60.
L. Lin, J. Lu, L. Ying, and W. E, Pole-based approximation of the Fermi--Dirac function, Chin. Ann. Math., 30B (2009), pp. 729--742.
61.
R. Luck and J. W. Stevens, Explicit solutions for transcendental equations, SIAM Rev., 44 (2002), pp. 227--233.
62.
J. N. Lyness, Numerical algorithms based on the theory of complex variable, in Proceedings of the 22nd National Conference, ACM, 1967, pp. 125--133.
63.
J. N. Lyness and L. M. Delves, On numerical contour integration round a closed contour, Math. Comput., 21 (1967), 561--577.
64.
J. N. Lyness and C. B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4 (1967), pp. 202--210.
65.
J. N. Lyness and G. Sande, Algorithm 413: ENTCAF and ENTCRE: Evaluation of normalized Taylor coefficients of an analytic function, Commun. ACM, 14 (1971), pp. 669--675.
66.
J. E. McCune, Exact inversion of dispersion relations, Phys. Fluids, 9 (1966), pp. 2082--2084.
67.
L. Meier III and G. G. Luenberger, Approximation of linear constant systems, IEEE Trans. Automat. Control, 12 (1967), pp. 585--588.
68.
C. Méray, Observations sur la légitimité de l'interpolation, Ann. Sci. Éc. Norm. Supér., 3 (1884), pp. 165--176.
69.
R. Pachón, P. Gonnet, and J. Van Deun, Fast and stable rational interpolation in roots of unity and Chebyshev points, SIAM J. Numer. Anal., 50 (2012), pp. 1713--1734.
70.
C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J., 13 (1966), pp. 289--291.
71.
E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79 (2009), pp. 1--6.
72.
C. Runge, Theorie und Praxis der Reihen, G. J. Göschen, Leipzig, 1904.
73.
T. Sakurai, P. Kravanja, H. Sugiura, and M. Van Barel, An error analysis of two related quadrature methods for computing zeros of analytic functions, J. Comput. Appl. Math., 152 (2003), pp. 467--480.
74.
T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math, 159 (2003), pp. 119--128.
75.
T. Sakurai and H. Tadano, CIRR: A Rayleigh--Ritz type method with contour integral for generalized eigenvalue problems, Hokkaido Math. J., 36 (2007), pp. 745--757.
76.
T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integrators via Carathéodory--Fejér approximation and contour integrals, Electron. Trans. Numer. Anal., 29 (2007), pp. 1--18.
77.
C. Schneider and W. Werner, Some new aspects of rational interpolation, Math. Comp., 47 (1986), pp. 285--299.
78.
I. H. Sloan and R. S. Womersley, Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math., 21 (2004), pp. 107--125.
79.
R. Spira, Zeros of approximate functional approximations, Math. Comp., 21 (1967), pp. 41--48.
80.
W. Squire and G. Trapp, Using complex variables to estimate derivatives of real functions, SIAM Rev., 40 (1998), pp. 110--112.
81.
P. T. P. Tang and E. Polizzi, Subspace Iteration with Approximate Spectral Projection, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 354--390.
82.
A. Townsend, private communication, 2012.
83.
L. N. Trefethen, Rational approximation on the unit disk, Numer. Math., 37 (1981), pp. 297--320.
84.
L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013.
85.
L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM Rev., to appear.
86.
J. L. Walsh, The analogue for maximally convergent polynomials of Jentzsch's theorem, Duke Math. J., 26 (1959), pp. 605--616.
87.
J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 5th ed., AMS, Providence, RI, 1969.
88.
E. Wegert, Visual Complex Functions, Springer, New York, 2012.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1795 - 1821
ISSN (online): 1095-7170

History

Submitted: 29 July 2013
Accepted: 10 April 2014
Published online: 5 August 2014

Keywords

  1. polynomial interpolation
  2. barycentric formula
  3. Cauchy integral formula
  4. trapezoidal rule
  5. rational approximation
  6. eigenvalues
  7. roots of unity
  8. FEAST
  9. RATDISK

MSC codes

  1. 41A10
  2. 41A20
  3. 65E05

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media