Abstract

It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed, and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators.

Keywords

  1. trapezoidal rule
  2. aliasing
  3. quadrature
  4. resolvent
  5. Hankel contour
  6. double exponential quadrature
  7. FFT
  8. Euler--Maclaurin formula

MSC codes

  1. 65D32
  2. 42A15
  3. 65-02
  4. 65R20

Formats available

You can view the full content in the following formats:

References

1.
B. Adcock and M. Richardson, New Exponential Variable Transform Methods for Functions with Endpoint Singularities, preprint, arXiv:1305.2643, 2013.
2.
L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1978.
3.
A. C. Aitken, Statistical Mathematics, Oliver and Boyd, Edinburgh, London, 1939.
4.
M. Alazah, S. N. Chandler-Wilde, and S. La Porte, Computing Fresnel integrals via modified trapezium rules, Numer. Math., to appear.
5.
A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), pp. 585--620.
6.
G. Allasia and R. Besenghi, Numerical calculation of incomplete gamma functions by the trapezoidal rule, Numer. Math., 50 (1987), pp. 419--428.
7.
G. Allasia and R. Besenghi, Numerical computation of Tricomi's psi function by the trapezoidal rule, Computing, 39 (1987), pp. 271--279.
8.
G. Allasia and R. Besenghi, Numerical calculation of the Riemann zeta function and generalizations by means of the trapezoidal rule, in Numerical and Applied Mathematics, Part II, Baltzer, Paris, 1989, pp. 467--472.
9.
E. G. Anastasselou, A formal comparison of the Delves--Lyness and Burniston--Siewert methods for locating the zeros of analytic functions, IMA J. Numer. Anal., 6 (1986), pp. 337--341.
10.
J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura, A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Lett., 1 (2009), pp. 52--55.
11.
A. P. Austin, P. Kravanja, and L. N. Trefethen, Numerical algorithms based on analytic function values at roots of unity, SIAM J. Numer. Anal., to appear.
12.
D. H. Bailey and J. M. Borwein, High-precision numerical integration: Progress and challenges, J. Symbolic Comput., 46 (2011), pp. 741--754.
13.
D. H. Bailey, K. Jeyabalan, and X. S. Li, A comparison of three high-precision quadrature schemes, Experiment. Math., 14 (2005), pp. 317--329.
14.
D. H. Bailey and X. S. Li, A comparison of three high-precision quadrature schemes, in Proceedings of the Real Numbers and Computing Conference, Lyon, 2003.
15.
L. Banjai and D. Peterseim, Parallel multistep methods for linear evolution problems, IMA J. Numer. Anal., 32 (2012), pp. 1217--1240.
16.
L. Banjai and S. Sauter, Rapid solution of the wave equation in unbounded domains, SIAM J. Numer. Anal., 47 (2008), pp. 227--249.
17.
M. Benzi, P. Boito, and N. Razouk, Decay properties of spectral projectors with applications to electronic structure, SIAM Rev., 55 (2013), pp. 3--64.
18.
J.-P. Berrut, Baryzentrische Formeln zur trigonometrischen Interpolation \rm II: Stabilität und Anwendung auf die Fourieranalyse bei ungleichabständigen Stützstellen, Z. Angew. Math. Phys., 35 (1984), pp. 193--205.
19.
J.-P. Berrut, A circular interpretation of the Euler--Maclaurin formula, J. Comput. Appl. Math., 189 (2006), pp. 375--386.
20.
J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), pp. 501--517.
21.
J.-P. Berrut and M. R. Trummer, Equivalence of Nyström's method and Fourier methods for the numerical solution of Fredholm integral equations, Math. Comp., 48 (1987), pp. 617--623.
22.
W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra Appl., 436 (2012), pp. 3839--3863.
23.
I. Bogaert, B. Michiels, and J. Fostier, $\mathcal{O}(1)$ computation of Legendre polynomials and Gauss--Legendre nodes and weights for parallel computing, SIAM J. Sci. Comput., 34 (2012), pp. C83--C101.
24.
F. Bornemann, Accuracy and stability of computing high-order derivatives of analytic functions by Cauchy integrals, Found. Comput. Math., 11 (2011), pp. 1--63.
25.
F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The SIAM $100$-Digit Challenge: A Study in High-Accuracy Numerical Computing, SIAM, Philadelphia, 2004.
26.
H. Brass and K. Petras, Quadrature Theory: The Theory of Numerical Integration on a Compact Interval, AMS, Providence, RI, 2011.
27.
O. P. Bruno, V. Dominguez, and F.-J. Sayas, Convergence analysis of a high-order Nystrom integral-equation method for surface scattering problems, Numer. Math., 124 (2013), pp. 603--645.
28.
K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2145--A2172.
29.
J. C. Butcher, On the numerical inversion of Laplace and Mellin transforms, in Conference on Data Processing and Automatic Computing Machines, Salisbury, Australia, 1957, pp. 117-1--117-8.
30.
C. Chiarella and A. Reichel, On the evaluation of integrals related to the error function, Math. Comp., 22 (1968), pp. 137--143.
31.
W. J. Cody, G. Meinardus, and R. S. Varga, Chebyshev rational approximations to $e^{-x}$ in $[\kern .5pt 0,+\infty)$ and applications to heat-conduction problems, J. Approximation Theory, 2 (1969), pp. 50--65.
32.
L. Collatz, The Numerical Treatment of Differential Equations, 3rd ed., Springer-Verlag, Berlin, 1960.
33.
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1998.
34.
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), pp. 329--359.
35.
E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), pp. 673--696.
36.
J. H. Curtiss, A stochastic treatment of some classical interpolation problems, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, 1961, pp. 79--93.
37.
P. J. Davis, On the numerical integration of periodic analytic functions, in On Numerical Integration: Proceedings of a Symposium, Madison, 1958, R. E. Langer, ed., Math. Res. Ctr., University of Wisconsin, 1959, pp. 45--59.
38.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975.
39.
L. M. Delves and J. N. Lyness, A numerical method for locating the zeros of an analytic function, Math. Comp., 21 (1967), pp. 543--560.
40.
B. Dingfelder and J. A. C. Weideman, An Improved Talbot Method for Numerical Laplace Transform Inversion, preprint, arXiv:1304.2505, 2013.
41.
A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput., 14 (1993), pp. 1368--1393.
42.
D. Elliott, The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function, Math. Comp., 18 (1964), pp. 274--284.
43.
D. Elliott, Sigmoidal-trapezoidal quadrature for ordinary and Cauchy principal value integrals, ANZIAM J., 46 (2004), pp. E1--E69.
44.
V. N. Faddeyeva and N. M. Terentev, Tables of values of the function $w(z)=e^{-z^{2}} (1+2i\pi^{-1/2}\int _{0}^{z}e^{t^{2}}dt)$ for complex argument, in Mathematical Tables Series, Vol. 11, V. A. Fok, ed., Pergamon Press, Oxford, 1961.
45.
L. Fejér, Interpolation und konforme Abbildung, Göttinger Nachrichten, 1918, pp. 319--331.
46.
H. E. Fettis, Numerical calculation of certain definite integrals by Poisson's summation formula, Math. Comp., 9 (1955), pp. 85--92.
47.
N. Flyer and A. S. Fokas, A hybrid analytical-numerical method for solving evolution partial differential equations. I. The half-line, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), pp. 1823--1849.
48.
A. S. Fokas, A Unified Approach to Boundary Value Problems, SIAM, Philadelphia, 2008.
49.
A. S. Fokas, N. Flyer, S. A. Smithemana, and E. A. Spence, A semi-analytical numerical method for solving evolution and elliptic partial differential equations, J. Comput. Appl. Math., 227 (2009), pp. 59--74.
50.
B. Fornberg, Numerical differentiation of analytic functions, ACM Trans. Math. Softw., 7 (1981), pp. 512--526.
51.
B. Fornberg, ALGORITHM 579: CPSC: Complex power series coefficients, ACM Trans. Math. Softw., 7 (1981), pp. 542--547.
52.
B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl., 48 (2004), pp. 853--867.
53.
B. G. Gabdulhaev, Approximate solution of singular integral equations by the method of mechanical quadratures, Dokl. Akad. Nauk SSSR, 179 (1968), pp. 260--263.
54.
D. Gaier, Lectures on Complex Approximation, Birkhäuser, Boston, 1987.
55.
R. Garrappa and M. Popolizio, Evaluation of generalized Mittag-Leffler functions on the real line, Adv. Comput. Math., 39 (2013), pp. 205--225.
56.
I. E. Garrick, Conformal mapping in aerodynamics with emphasis on the method of successive approximations, Nat. Bur. Standards Appl. Math. Ser., 18 (1952), pp. 137--147.
57.
I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, $\mathscr H$-matrix approximation for the operator exponential with applications, Numer. Math., 92 (2002), pp. 83--111.
58.
I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent parallel discretization methods for the first order evolution equations, Comput. Methods Appl. Math., 1 (2001), pp. 333--355.
59.
I. Gavrilyuk, V. Makarov, and V. Vasylyk, Exponentially Convergent Algorithms for Abstract Differential Equations, Birkhäuser, Basel, 2011.
60.
A. Gil, J. Segura, and N. M. Temme, Computing complex Airy functions by numerical quadrature, Numer. Algorithms, 30 (2002), pp. 11--23.
61.
A. Gil, J. Segura, and N. M. Temme, Computing special functions by using quadrature rules, Numer. Algorithms, 33 (2003), pp. 265--275.
62.
A. Gil, J. Segura, and N. M. Temme, Numerical Methods for Special Functions, SIAM, Philadelphia, 2007.
63.
S. Goedecker, Linear scaling electronic structure methods, Rev. Modern Phys., 71 (1999), pp. 1085--1123.
64.
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, MD, 2013.
65.
A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sb., 62 (1989), pp. 305--348.
66.
P. Gonnet, S. Güttel, and L. N. Trefethen, Robust Padé approximation via SVD, SIAM Rev., 55 (2013), pp. 101--117.
67.
E. T. Goodwin, The evaluation of integrals of the form $\int_{-\infty}^\infty f(x) e^{-x^2} dx\,$, Proc. Cambridge Philos. Soc., 45 (1949), pp. 241--245.
68.
U. Graf, Introduction to Hyperfunctions and Their Integral Transforms: An Applied and Computational Approach, Birkhäuser, Basel, 2000.
69.
J. S. Green, The Calculation of the Time-Responses of Linear Systems, Ph.D. thesis, University of London, 1955.
70.
S.-\AA. Gustafson, Quadrature rules derived from linear convergence acceleration schemes, in Numerical Integration IV, Birkhäuser, Basel, 1993, pp. 151--165.
71.
N. Hale, N. J. Higham, and L. N. Trefethen, Computing $A^\alpha$, $\log(A)$, and related matrix functions by contour integrals, SIAM J. Numer. Anal., 46 (2008), pp. 2505--2523.
72.
N. Hale and A. Townsend, Fast and accurate computation of Gauss--Legendre and Gauss--Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35 (2013), pp. A652--A674.
73.
J. Helsing and R. Ojala, On the evaluation of layer potentials close to their sources, J. Comput. Phys., 227 (2008), pp. 2899--2921.
74.
P. Henrici, Applied and Computational Complex Analysis, Vol. 2: Special Functions, Integral Transforms, Asymptotics, Continued Fractions, Wiley, New York, 1977.
75.
P. Henrici, Fast Fourier methods in computational complex analysis, SIAM Rev., 21 (1979), pp. 481--527.
76.
P. Henrici, Applied and Computational Complex Analysis, Vol. $3$: Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions, Wiley, New York, 1986.
77.
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
78.
E. Hlawka, Interpolation analytischer Funktionen auf dem Einheitskreis, in Number Theory and Analysis, P. Turán, ed., Plenum, New York, 1969, pp. 99--118.
79.
M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209--286.
80.
D. B. Hunter, The calculation of certain Bessel functions, Math. Comp., 18 (1964), pp. 123--128.
81.
D. B. Hunter and T. Regan, A note on the evaluation of the complementary error function, Math. Comp., 26 (1972), pp. 539--541.
82.
T. Ikegami and T. Sakurai, Contour integral eigensolver for non-Hermitian systems: A Rayleigh--Ritz-type approach, Taiwanese J. Math., 14 (2010), pp. 825--837.
83.
K. J. in 't Hout and J. A. C. Weideman, A contour integral method for the Black--Scholes and Heston equations, SIAM J. Sci. Comput., 33 (2011), pp. 763--785.
84.
N. I. Ioakimidis, K. E. Papadakis, and E. A. Perdios, Numerical evaluation of analytic functions by Cauchy's theorem, BIT, 31 (1991), pp. 276--285.
85.
M. Iri, S. Moriguti, and Y. Takasawa, On a certain quadrature formula, J. Comput. Appl. Math., 17 (1987), pp. 3--20 (reprinted translation of 1970 paper in Japanese).
86.
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966.
87.
D. Jackson, Roots and singular points of analytic functions, Ann. Math., 19 (1917), pp. 142--151.
88.
M. Javed and L. N. Trefethen, A trapezoidal rule error bound unifying the Euler--Maclaurin formula and geometric convergence for periodic functions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2013), 20130571.
89.
L. Kalmár, On interpolation, Mat. Lapok, 33 (1926), pp. 120--149 (in Hungarian).
90.
A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26 (2005), pp. 1214--1233.
91.
T. Kato, Perturbation Theory for Linear Operators, corrected 2nd ed., Springer-Verlag, Berlin, 1980.
92.
O. Kis, On the convergence of the trigonometrical and harmonical interpolation, Acta Math. Acad. Sci. Hungar., 7 (1956), pp. 173--200 (in Russian).
93.
A. Klöckner, A. Barnett, L. Greengard, and M. O'Neil, Quadrature by expansion: A new method for the evaluation of layer potentials, J. Comput. Phys, 252 (2013), pp. 332--349.
94.
N. M. Korobov, Number-Theoretic Methods in Approximate Analysis, Fizmatgiz, Moscow, 1963.
95.
P. Kravanja and M. Van Barel, Computing the Zeros of Analytic Functions, Lecture Notes in Math. 1727, Springer-Verlag, Berlin, 2000.
96.
H.-O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24 (1972), pp. 199--215.
97.
R. Kress, Interpolation auf einem unendlichen Intervall, Computing, 6 (1970), pp. 274--288.
98.
R. Kress, Zur numerischen Integration periodischer Funktionen nach der Rechteckregel, Numer. Math., 20 (1972), pp. 87--92.
99.
R. Kress, Numerical Analysis, Springer, New York, 1998.
100.
R. Kress, Linear Integral Equations, Springer, New York, 1989.
101.
R. Kress and E. Martensen, Anwendung der Rechteckregel auf die reelle Hilberttransformation mit unendlichem Intervall, Z. Angew. Math. Mech, 50 (1970), pp. 61--64.
102.
D. P. Laurie, Periodizing transformations for numerical integration, J. Comput. Appl. Math., 66 (1996), pp. 337--344.
103.
H. Lee and D. Sheen, Laplace transformation method for the Black--Scholes equation, Int. J. Numer. Anal. Model., 6 (2009), pp. 642--658.
104.
L. Lin, J. Lu, L. Ying, and W. E, Pole-based approximation of the Fermi--Dirac function, Chin. Ann. Math. Ser. B, 30 (2009), pp. 729--742.
105.
M. López-Fernández and C. Palencia, On the numerical inversion of the Laplace transform in certain holomorphic mappings, Appl. Numer. Math., 51 (2004), pp. 289--303.
106.
M. López-Fernández, C. Palencia, and A. Schädle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal., 44 (2006), pp. 1332--1350.
107.
C. Lubich, Convolution quadrature revisited, BIT, 44 (2004), pp. 503--514.
108.
R. Luck and J. W. Stevens, Explicit solutions for transcendental equations, SIAM Rev., 44 (2002), pp. 227--233.
109.
Y. L. Luke, Simple formulas for the evaluation of some higher transcendental functions, J. Math. Phys., 34 (1956), pp. 298--307.
110.
Y. L. Luke, The Special Functions and Their Approximations, Vol. 1, Academic Press, New York, 1969.
111.
Y. L. Luke, The Special Functions and Their Approximations, Vol. 2, Academic Press, New York, 1969.
112.
J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992.
113.
J. N. Lyness, Quadrature methods based on complex function values, Math. Comp., 23 (1969), pp. 601--619.
114.
J. N. Lyness and L. M. Delves, On numerical contour integration round a closed contour, Math. Comp., 21 (1967), pp. 561--577.
115.
J. N. Lyness and G. Giunta, A modification of the Weeks method for numerical inversion of the Laplace transform, Math. Comp., 47 (1986), pp. 313--322.
116.
J. N. Lyness and C. B. Moler, Numerical differentiation of analytic functions, SIAM J. Numer. Anal., 4 (1967), pp. 202--210.
117.
J. N. Lyness and G. Sande, Algorithm $413$: ENTCAF and ENTCRE: Evaluation of normalized Taylor coefficients of an analytic function, Comm. ACM, 14 (1971), pp. 669--675
118.
F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), pp. 283--299.
119.
A. I. Markushevich, Theory of Functions of a Complex Variable, 2nd ed., Chelsea, New York, 1965.
120.
E. Martensen, Zur numerischen Auswertung uneigentlicher Integrale, Z. Angew. Math. Mech., 48 (1968), pp. T83--T85.
121.
F. Matta and A. Reichel, Uniform computation of the error function and other related functions, Math. Comp., 25 (1971), pp. 339--344.
122.
J. E. McCune, Exact inversion of dispersion relations, Phys. Fluids, 9 (1966), pp. 2082--2084.
123.
W. McLean and V. Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal., 24 (2004), pp. 439--463.
124.
J. McNamee, Error-bounds for the evaluation of integrals by the Euler--Maclaurin formula and by Gauss-type formulae, Math. Comp., 18 (1964), pp. 368--381.
125.
K. Meerbergen, The solution of parametrized symmetric linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 1038--1059.
126.
L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, London, 1933.
127.
P. A. P. Moran, Approximate relations between series and integrals, Math. Comp., 12 (1958), pp. 34--37.
128.
M. Mori, An IMT-type double exponential formula for numerical integration, Publ. Res. Inst. Math. Sci., 14 (1978), pp. 713--729.
129.
M. Mori, A method for evaluation of the error function of real and complex variable with high relative accuracy, Publ. Res. Inst. Math. Sci., 19 (1983), pp. 1081--1094.
130.
M. Mori, Discovery of the double exponential transformation and its developments, Publ. Res. Inst. Math. Sci., 41 (2005), pp. 897--935.
131.
M. Mori and M. Sugihara, The double-exponential transformation in numerical analysis, J. Comput. Appl. Math., 127 (2001), pp. 287--296.
132.
D. J. Newman, Rational approximation to $|x|$, Michigan Math. J., 11 (1964), pp. 11--14.
133.
E. J. Nyström, Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben, Acta Math., 54 (1930), pp. 185--204.
134.
H. O'Hara and F. J. Smith, Error estimation in the Clenshaw--Curtis quadrature formula, Comput. J., 11 (1968), pp. 213--219.
135.
S. A. Orszag, Comparison of pseudospectral and spectral approximations, Stud. Appl. Math., 51 (1972), pp. 253--259.
136.
R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, AMS, Providence, RI, 1934.
137.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
138.
S.-D. Poisson, Mémoire sur le calcul numérique des intégrales définies (abstract of Poi26), Nouv. Bull. des Sc. de la Societe Philomathique Paris, 1826, pp. 161--162.
139.
S.-D. Poisson, Sur le calcul numérique des intégrales définies, Mémoires de l'Académie Royale des Sciences de l'Institut de France, 4 (1827), pp. 571--602.
140.
E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79 (2009), 115112.
141.
M. Richardson, Spectral Representation of Functions with Endpoint Singularities, D. Phil. Diss., Math. Inst., University of Oxford, 2013.
142.
C. Runge, Theorie und Praxis der Reihen, G. J. Göschen, Leipzig, 1904.
143.
T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math. Comp., 18 (1964), pp. 245--253.
144.
T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math., 159 (2003), pp. 119--128.
145.
T. Schmelzer and L. N. Trefethen, Computing the gamma function using contour integrals and rational approximations, SIAM J. Numer. Anal., 45 (2007), pp. 558--571.
146.
T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integrators via Carathéodory--Fejér approximation and contour integrals, Electron. Trans. Numer. Anal., 29 (2007), pp. 1--18.
147.
C. B. Schneider, Inversion formulas for the discretized Hilbert transform on the unit circle, SIAM J. Numer. Anal., 35 (1998), pp. 71--77.
148.
C. Schwartz, Numerical integration of analytic functions, J. Comput. Phys., 4 (1969), pp. 19--29.
149.
C. Schwartz, Numerical calculation of Bessel functions, preprint, arXiv:1209.1547, 2012.
150.
D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23 (2003), pp. 269--299.
151.
A. Sidi, A new variable transformation for numerical integration, in Numerical Integration IV, Internat. Ser. Numer. Math. 112, Birkhäuser, Basel, 1993, pp. 359--373.
152.
A. Sidi, Extension of a class of periodizing variable transformations for numerical integration, Math. Comp., 75 (2006), pp. 327--343.
153.
V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1--59.
154.
W. Squire and G. Trapp, Using complex variables to estimate derivatives of real functions, SIAM Rev., 40 (1998), pp. 110--112.
155.
H. Stahl, Best uniform rational approximation of $|x|$ on $[-1,1]$, Russian Acad. Sci. Sb. Math., 76 (1993), pp. 461--487.
156.
F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York, 1993.
157.
F. Stenger, Explicit nearly optimal linear rational approximation with preassigned poles, Math. Comp., 47 (1986), pp. 225--252.
158.
F. Stenger, Sinc Numerical Methods, CRC Press, Boca Raton, FL, 2010.
159.
A. H. Stroud, A bibliography on approximate integration, Math. Comput., 15 (1961), pp. 52--80.
160.
A. H. Stroud and J. P. Kohli, Computation of $J_n(x)$ by numerical integration, Commun. ACM, 12 (1969), pp. 236--238.
161.
H. Takahasi and M. Mori, Estimation of errors in the numerical quadrature of analytic functions, Appl. Anal., 1 (1971), pp. 201--229.
162.
H. Takahasi and M. Mori, Quadrature formulas obtained by variable transformation, Numer. Math., 21 (1973), pp. 206--219.
163.
H. Takahasi and M. Mori, Double exponential formulas for numerical integration, Publ. Res. Inst. Math. Sci., 9 (1974), pp. 721--741.
164.
A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23 (1979), pp. 97--120.
165.
K. Tanaka, M. Sugihara, K. Murota, and M. Mori, Function classes for double exponential integration formulas, Numer. Math., 111 (2009), pp. 631--655.
166.
N. M. Temme, Numerical aspects of special functions, Acta Numer., 16 (2007), pp. 379--478.
167.
N. M. Temme, Error functions, Dawson's and Fresnel integrals, in NIST Handbook of Mathematical Functions, U. S. Dept. Commerce, Washington, DC, 2010, pp. 159--171.
168.
L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000.
169.
L. N. Trefethen, Is Gauss quadrature better than Clenshaw--Curtis?, SIAM Rev., 50 (2008), pp. 67--87.
170.
L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013.
171.
L. N. Trefethen and M. H. Gutknecht, The Carathéodory--Fejér method for real rational approximation, SIAM J. Numer. Anal., 20 (1983), pp. 420--436.
172.
L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT, 46 (2006), pp. 653--670.
173.
A. M. Turing, A method for the calculation of the zeta-function, Proc. Lond. Math. Soc., 48 (1943), pp. 180--197 (written in 1939).
174.
M. Vetterli, J. Kovačević, and V. K. Goyal, Foundations of Signal Processing, Cambridge University Press, Cambridge, UK, 2013.
175.
J. Waldvogel, Toward a general error theory of the trapezoid rule, in Approximation and Computation: In Honor of Gradimir V. Milovanović, W. Gautschi et al., eds., Springer, 2012, pp. 267--282.
176.
H. Weber, Numerical computation of the Fourier transform using Laguerre functions and the fast Fourier transform, Numer. Math., 36 (1981), pp. 197--209.
177.
W. T. Weeks, Numerical inversion of Laplace transforms using Laguerre functions, J. Assoc. Comput. Mach., 13 (1966), pp. 419--429.
178.
J. A. C. Weideman, Algorithms for parameter selection in the Weeks method for inverting the Laplace transform, SIAM J. Sci. Comput., 21 (1999), pp. 111--128.
179.
J. A. C. Weideman, Numerical integration of periodic functions: A few examples, Amer. Math. Monthly, 109 (2002), pp. 21--36.
180.
J. A. C. Weideman, Optimizing Talbot's contours for the inversion of the Laplace transform, SIAM J. Numer. Anal., 44 (2006), pp. 2342--2362.
181.
J. A. C. Weideman, Improved contour integral methods for parabolic PDEs, IMA J. Numer. Anal., 30 (2010), pp. 334--350.
182.
J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comp., 76 (2007), pp. 1341--1356.
183.
J. A. C. Weideman and L. N. Trefethen, The kink phenomenon in Fejér and Clenshaw--Curtis quadrature, Numer. Math., 107 (2007), pp. 707--727.
184.
H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Anal., 77 (1916), pp. 313--352.
185.
E. T. Whittaker, On the functions which are represented by the expansions of the interpolation-theory, Proc. Roy. Soc. Edinburgh, 35 (1915), pp. 181--194.
186.
J. M. Whittaker, Interpolatory Function Theory, Cambridge University Press, Cambridge, UK, 1935.
187.
S. Xiang and F. Bornemann, On the convergence rates of Gauss and Clenshaw--Curtis quadrature for functions of limited regularity, SIAM J. Numer. Anal., 50 (2012), pp. 2581--2587.
188.
S. Yokota and T. Sakurai, A projection method for nonlinear eigenvalue problems using contour integrals, JSIAM Lett., 5 (2013), pp. 41--44.
189.
E. I. Zolotarev, Application of elliptic functions to questions of functions deviating least and most from zero, Izvestiya Imp. Akad. Nauk, 1877, pp. 1--59.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 385 - 458
ISSN (online): 1095-7200

History

Submitted: 6 August 2013
Accepted: 6 January 2014
Published online: 7 August 2014

Keywords

  1. trapezoidal rule
  2. aliasing
  3. quadrature
  4. resolvent
  5. Hankel contour
  6. double exponential quadrature
  7. FFT
  8. Euler--Maclaurin formula

MSC codes

  1. 65D32
  2. 42A15
  3. 65-02
  4. 65R20

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media