Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise

We compare Wiener chaos and stochastic collocation methods for linear advection-reaction-diffusion equations with multiplicative white noise. Both methods are constructed based on a recursive multistage algorithm for long-time integration. We derive error estimates for both methods and compare their numerical performance. Numerical results confirm that the recursive multistage stochastic collocation method is of order $\Delta$ (time step size) in the second-order moments while the recursive multistage Wiener chaos method is of order $\Delta^{\mathsf{N}}+\Delta^2$ ($\mathsf{N}$ is the order of Wiener chaos) for advection-diffusion-reaction equations with commutative noises, in agreement with the theoretical error estimates. However, for noncommutative noises, both methods are of order one in the second-order moments.

  • 1.  L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley-Interscience, New York, 1974. Google Scholar

  • 2.  I. Babuska F. Nobile and  R. Tempone , A stochastic collocation method for elliptic partial differential equations with random input data , SIAM J. Numer. Anal. , 45 ( 2007 ), pp. 1005 -- 1034 . LinkISIGoogle Scholar

  • 3.  J. Bäck F. Nobile L. Tamellini and  R. Tempone , Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison, in Spectral and High Order Methods for Partial Differential Equations, Springer , New York , 2011 , pp. 43 -- 62 . Google Scholar

  • 4.  A. Budhiraja and  G. Kallianpur , Approximations to the solution of the Zakai equation using multiple Wiener and Stratonovich integral expansions , Stochastics Stochastics Rep. , 56 ( 1996 ), pp. 271 -- 315 . CrossrefGoogle Scholar

  • 5.  A. Budhiraja and  G. Kallianpur , The Feynman-Stratonovich semigroup and Stratonovich integral expansions in nonlinear filtering , Appl. Math. Optim. , 35 ( 1997 ), pp. 91 -- 116 . ISIGoogle Scholar

  • 6.  R. H. Cameron and  W. T. Martin , The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals , Ann. of Math. (2) , 48 ( 1947 ), pp. 385 -- 392 . CrossrefISIGoogle Scholar

  • 7.  C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Springer-Verlag, Berlin, 2006. Google Scholar

  • 8.  M. Cheng T. Y. Hou and  Z. Zhang , A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , J. Comput. Phys. , 242 ( 2013 ), pp. 843 -- 868 . CrossrefISIGoogle Scholar

  • 9.  G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992. Google Scholar

  • 10.  H. C. Elman C. W. Miller E. T. Phipps and  R. S. Tuminaro , Assessment of collocation and Galerkin approaches to linear diffusion equations with random data , Int. J. Uncertain. Quantif. , 1 ( 2011 ), pp. 19 -- 33 . CrossrefISIGoogle Scholar

  • 11.  L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998. Google Scholar

  • 12.  A. Genz and  B. D. Keister , Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , J. Comput. Appl. Math. , 71 ( 1996 ), pp. 299 -- 309 . CrossrefISIGoogle Scholar

  • 13.  I. Gyöngy and  P. R. Stinga , Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations, in Seminar on Stochastic Analysis, Random Fields and Applications VII, R. Dalang, M. Dozzi, and F. Russo, eds., Springer , New York , 2013 , pp. 95 -- 130 . Google Scholar

  • 14.  H. Holden, B. Øksendal, J. Uboe, and T. Zhang, Stochastic partial differential equations, Birkhäuser Boston, Boston, MA, 1996. Google Scholar

  • 15.  T. Y. Hou W. Luo and  B. Rozovskii . Zhou, Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , J. Comput. Phys. , 216 ( 2006 ), pp. 687 -- 706 . CrossrefISIGoogle Scholar

  • 16.  Y. Hu G. Kallianpur and  J. Xiong , An approximation for the Zakai equation , Appl. Math. Optim. , 45 ( 2002 ), pp. 23 -- 44 . CrossrefISIGoogle Scholar

  • 17.  I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer-Verlag, New York, 1991. Google Scholar

  • 18.  N. V. Krylov, Introduction to the Theory of Diffusion Processes, AMS, Providence, RI, 1995. Google Scholar

  • 19.  H. Kunita , Stochastic partial differential equations connected with nonlinear filtering, in Nonlinear Filtering and Stochastic Control (Cortona, 1981), Springer , Berlin , 1982 , pp. 100 -- 169 . Google Scholar

  • 20.  S. V. Lototskiĭ and  B. L. Rozovskiĭ , The passive scalar equation in a turbulent incompressible Gaussian velocity field , Uspekhi-Mat. Nauk , 59 ( 2004 ), pp. 105 -- 120 . CrossrefGoogle Scholar

  • 21.  S. Lototsky R. Mikulevicius and  B. L. Rozovskii , Nonlinear filtering revisited: A spectral approach , SIAM J. Control Optim. , 35 ( 1997 ), pp. 435 -- 461 . LinkISIGoogle Scholar

  • 22.  S. Lototsky and  B. Rozovskii , Stochastic differential equations: A Wiener chaos approach, in From Stochastic Calculus to Mathematical Finance, Springer , Berlin , 2006 , pp. 433 -- 506 . Google Scholar

  • 23.  S. V. Lototsky and  B. L. Rozovskii , Wiener chaos solutions of linear stochastic evolution equations , Ann. Probab. , 34 ( 2006 ), pp. 638 -- 662 . CrossrefISIGoogle Scholar

  • 24.  G. Mastroianni and  G. Monegato , Error estimates for Gauss-Laguerre and Gauss-Hermite quadrature formulas, in Approximation and Computation, Birkhäuser Boston, Boston , MA , 1994 , pp. 421 -- 434 . Google Scholar

  • 25.  R. Mikulevicius and  B. Rozovskii , Linear parabolic stochastic PDEs and Wiener chaos , SIAM J. Math. Anal. , 29 ( 1998 ), pp. 452 -- 480 . LinkISIGoogle Scholar

  • 26.  G. N. Milstein and M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin, 2004. Google Scholar

  • 27.  F. Nobile R. Tempone and  C. G. Webster , An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data , SIAM J. Numer. Anal. , 46 ( 2008 ), pp. 2411 -- 2442 . LinkISIGoogle Scholar

  • 28.  S. Ogawa , Quelques propriétés de l'intégrale stochastique du type noncausal , Japan J. Appl. Math. , 1 ( 1984 ), pp. 405 -- 416 . CrossrefGoogle Scholar

  • 29.  R. Paley and N. Wiener, Fourier Transforms in the Complex Domain, AMS, Providence, RI, 1934. Google Scholar

  • 30.  B. L. Rozovskiĭ, Stochastic Evolution Systems, Kluwer, Dordrecht, the Netherlands, 1990. Google Scholar

  • 31.  T. P. Sapsis and  P. F. . Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems , Phys. D , 238 ( 2009 ), pp. 2347 -- 2360 . CrossrefISIGoogle Scholar

  • 32.  C. Schwab and  C. J. Gittelson , Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs , Acta Numer. , 20 ( 2011 ), pp. 291 -- 467 . CrossrefGoogle Scholar

  • 33.  S. A. Smolyak , Quadrature and interpolation formulas for tensor products of certain classes of functions , Soviet Math. Dokl. , 4 ( 1963 ), pp. 240 -- 243 . Google Scholar

  • 34.  E. Wong and  M. Zakai , On the convergence of ordinary integrals to stochastic integrals , Ann. Math. Statist. , 36 ( 1965 ), pp. 1560 -- 1564 . CrossrefISIGoogle Scholar

  • 35.  E. Wong and  M. Zakai , On the relation between ordinary and stochastic differential equations , Internat. J. Engrg. Sci. , 3 ( 1965 ), pp. 213 -- 229 . CrossrefGoogle Scholar

  • 36.  D. Xiu and  J. Hesthaven , High-order collocation methods for differential equations with random inputs , SIAM J. Sci. Comput. , 27 ( 2005 ), pp. 1118 -- 1139 . LinkISIGoogle Scholar

  • 37.  Z. Zhang B. Rozovskii M. V. Tretyakov and  G. E. Karniadakis , A multistage Wiener chaos expansion method for stochastic advection-diffusion-reaction equations , SIAM J. Sci. Comput. , 34 ( 2012 ), pp. A914 -- A936 . LinkISIGoogle Scholar

  • 38.  Z. Zhang M. V. Tretyakov B. Rozovskii and  G. E. Karniadakis , A recursive stochastic collocation method for stochastic differential equations with white noise , SIAM J. Sci. Comput. , 36 ( 2014 ), pp. A1652 -- A1677 . LinkISIGoogle Scholar