Abstract

When using the Arnoldi method for approximating $f(A){\mathbf b}$, the action of a matrix function on a vector, the maximum number of iterations that can be performed is often limited by the storage requirements of the full Arnoldi basis. As a remedy, different restarting algorithms have been proposed in the literature, none of which has been universally applicable, efficient, and stable at the same time. We utilize an integral representation for the error of the iterates in the Arnoldi method which then allows us to develop an efficient quadrature-based restarting algorithm suitable for a large class of functions, including the so-called Stieltjes functions and the exponential function. Our method is applicable for functions of Hermitian and non-Hermitian matrices, requires no a priori spectral information, and runs with essentially constant computational work per restart cycle. We comment on the relation of this new restarting approach to other existing algorithms and illustrate its efficiency and numerical stability by various numerical experiments.

Keywords

  1. matrix function
  2. Krylov subspace approximation
  3. restarted Arnoldi method
  4. restarted Lanczos method
  5. deflated restarting
  6. polynomial interpolation
  7. Gaussian quadrature
  8. Padé approximation

MSC codes

  1. 65F60
  2. 65F50
  3. 65F10
  4. 65F30
  5. 41A20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, A generalization of the steepest descent method for matrix functions, Electron. Trans. Numer. Anal., 28 (2008), pp. 206--222.
2.
M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429 (2008), pp. 229--314.
3.
G. A. Baker and P. Graves-Morris, Padé Approximants, Cambridge University Press, Cambridge, UK, 1996.
4.
B. Beckermann and L. Reichel, Error estimation and evaluation of matrix functions via the Faber transform, SIAM J. Numer. Anal., 47 (2009), pp. 3849--3883.
5.
C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Heidelberg, 1975.
6.
J. Bloch, A. Frommer, B. Lang, and T. Wettig, An iterative method to compute the sign function of a non-Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential, Comput. Phys. Comm., 177 (2007), pp. 933--943.
7.
K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction--diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2145--A2172.
8.
J. R. Cardoso, Computation of the matrix $p$th root and its Fréchet derivative by integrals, Electron. Trans. Numer. Anal., 39 (2012), pp. 414--436.
9.
P. Davies and N. Higham, A Schur--Parlett algorithm for computing matrix functions, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464--485.
10.
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975.
11.
C. de Boor, Divided differences, Surv. Approx. Theory, 1 (2005), pp. 46--69.
12.
V. Druskin and L. Knizhnerman, Two polynomial methods of calculating functions of symmetric matrices, Comput. Math. Math. Physi., 29 (1989), pp. 112--121.
13.
V. Druskin and L. Knizhnerman, Extended Krylov subspaces: Approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 775--771.
14.
A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT, 40 (2000), pp. 241--266.
15.
M. Eiermann and O. G. Ernst, A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal., 44 (2006), pp. 2481--2504.
16.
M. Eiermann, O. G. Ernst, and S. Güttel, Deflated restarting for matrix functions, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 621--641.
17.
T. Ericsson, Computing Functions of Matrices Using Krylov Subspace Methods, Technical report, Chalmers University of Technology, Gothenburg, Sweden, 1990.
18.
A. Frommer, S. Güttel, and M. Schweitzer, FUNM_QUAD: An Implementation of a Stable, Quadrature-Based Restarted Arnoldi Method for Matrix Functions, Technical report, IMACM Preprint 14/04, 2014.
19.
A. Frommer and V. Simoncini, Marix functions, in Model Order Reduction: Theory, Research Aspects and Applications, H. A. van der Vorst, W. H. A. Schilders, and J. Rommes, eds., Mathematics in Industry, Springer-Verlag, Berlin, 2008.
20.
E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1236--1264.
21.
W. Gautschi, Quadrature formulae on half-infinite intervals, BIT, 31 (1991), pp. 437--446.
22.
S. Güttel, Rational Krylov Methods for Operator Functions, Ph.D. thesis, Fakultät für Mathematik und Informatik der Technischen Universität Bergakademie Freiberg, 2010.
23.
S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection, GAMM-Mitt., 36 (2013), pp. 8--31.
24.
S. Güttel and L. Knizhnerman, A black-box rational Arnoldi variant for Cauchy--Stieltjes matrix functions, BIT, 24 (2013), pp. 595--616.
25.
P. Henrici, Applied and Computational Complex Analysis, vol. 2, John Wiley & Sons, New York, 1977.
26.
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
27.
N. J. Higham and A. H. Al-Mohy, Computing matrix functions, Acta Numer., 19 (2010), pp. 159--208.
28.
M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911--1925.
29.
M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209--286.
30.
M. Ilić, I. W. Turner, and D. P. Simpson, A restarted Lanczos approximation to functions of a symmetric matrix, IMA J. Numer. Anal., 30 (2010), pp. 1044--1061.
31.
L. Knizhnerman, Calculation of functions of unsymmetric matrices using Arnoldi's method, Comput. Math. Math. Phys., 31 (1991), pp. 1--9.
32.
L. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace method for matrix function evaluations, Numer. Linear Algebra Appl., 17 (2010), pp. 615--638.
33.
C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. National Bureau of Standards, 45 (1950), pp. 255--282.
34.
G. Lastman and N. Sinha, Infinite series for logarithm of matrix, applied to identification of linear continuous-time multivariable systems from discrete-time models, Electron. Lett., 27 (1991), pp. 1468--1470.
35.
I. Moret and P. Novati, RD-rational approximations of the matrix exponential., BIT, 44 (2004), pp. 595--615.
36.
H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B, 417 (1998), pp. 141--144.
37.
C. C Paige, B. N Parlett, and H. A. Van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 1 (1993), pp. 1--7.
38.
Y. Saad, Analysis of some Krylov subspace approximations to the exponential operator, SIAM J. Numer. Anal., 29 (1992), pp. 209--228.
39.
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
40.
Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856--869.
41.
L. F Shampine, Vectorized adaptive quadrature in Matlab, J. Comput. Appl. Math., 211 (2008), pp. 131--140.
42.
G. E. Shilov, Elementary Real and Complex Analysis, MIT Press, Cambridge, MA, 1973.
43.
B. Singer and S. Spilerman, The representation of social processes by Markov models, Amer. J. Sociol., 82 (1976), pp. 1--54.
44.
H. Tal-Ezer, On restart and error estimation for Krylov approximation of $w=f(A)v$, SIAM J. Sci. Comput., 29 (2007), pp. 2426--2441.
45.
L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT, 46 (2006), pp. 653--670.
46.
J. van den Eshof, A. Frommer, Th. Lippert, K. Schilling, and H. A. van der Vorst, Numerical methods for the QCD overlap operator, I. Sign-function and error bounds, Comput. Phys. Comm., 146 (2002), pp. 203--224.
47.
J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 27 (2006), pp. 1438--1457.
48.
J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, AMS, Providence, RI, 1969.
49.
J. A. C. Weideman, Optimizing Talbot's contours for the inversion of the Laplace transform, SIAM J. Numer. Anal., 44 (2006), pp. 2342--2362.
50.
J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comp., 76 (2007), pp. 1341--1356.
51.
E. I. Zolotarev, Application of elliptic functions to the question of functions deviating least and most from zero, Zap. Imp. Akad. Nauk. St. Petersburg, 30 (1877), pp. 1--59.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 661 - 683
ISSN (online): 1095-7162

History

Submitted: 29 August 2013
Accepted: 12 February 2014
Published online: 22 May 2014

Keywords

  1. matrix function
  2. Krylov subspace approximation
  3. restarted Arnoldi method
  4. restarted Lanczos method
  5. deflated restarting
  6. polynomial interpolation
  7. Gaussian quadrature
  8. Padé approximation

MSC codes

  1. 65F60
  2. 65F50
  3. 65F10
  4. 65F30
  5. 41A20

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media