Abstract

We develop a tropical analogue of the simplex algorithm for linear programming. In particular, we obtain a combinatorial algorithm to perform one tropical pivoting step, including the computation of reduced costs, in $O(n(m+n))$ time, where $m$ is the number of constraints and $n$ is the dimension.

Keywords

  1. tropical geometry
  2. linear programming
  3. simplex method

MSC codes

  1. 14T05
  2. 90C05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Akian, S. Gaubert, and A. Guterman, Linear independence over tropical semi-rings and beyond, \newblock in Proceedings of the International Conference on Tropical and Idempotent Mathematics, G. L. Litvinov and S. N. Sergeev, eds., Contemp. Math. 495, AMS, Providence, RI, 2009, pp. 1--38.
2.
M. Akian, S. Gaubert, and A. Guterman, Tropical polyhedra are equivalent to mean payoff games, Internat. Algebra Comput., 22 (2012), 125001.
3.
X. Allamigeon, S. Gaubert, and E. Goubault, Computing the vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom., 49 (2013), pp. 247--279.
4.
M. Akian, S. Gaubert, and A. Guterman, Tropical Cramer determinants revisited, in Proceedings of the International Conference on Tropical and Idempotent Mathematics, G. L. Litvinov and S.N. Sergeev, eds., Contemp. Math. 616, AMS, Providence, RI, 2014, pp. 1--45.
5.
X. Allamigeon, S. Gaubert, and R. D. Katz, The number of extreme points of tropical polyhedra, J. Combin. Theory Ser. A, 118 (2011), pp. 162--189.
6.
M. Akian, S. Gaubert, V. Nitica, and I. Singer, Best approximation in max-plus semimodules, Linear Algebra Appl., 435 (2011), pp. 3261--3296.
7.
X. Allamigeon and R. D. Katz, Minimal external representations of tropical polyhedra, J. Combin. Theory Ser. A, 120 (2013), pp. 907--940.
8.
D. Alessandrini, Logarithmic limit sets of real semi-algebraic sets, Adv. Geom., 13 (2013), pp. 155--190.
9.
P. Butkovič and A. Aminu, Introduction to max-linear programming, IMA J. Management Math., 20 (2008), pp. 233--249.
10.
W. Briec and C. Horvath, $\mathbb{B}$-convexity, Optimization, 53 (2004), pp. 103--127.
11.
S. Basu, R. Pollack, and M. F. Coste-Roy, Algorithms in Real Algebraic Geometry, Algorithm Comput. Math. 10, Springer, New York, 2006.
12.
H. Bjorklund and S. Vorobyov, A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games, Discrete Appl. Math., 155 (2007), pp. 210--229.
13.
R. A. Cuninghame-Green, Minimax Algebra, Lecture Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin, 1979.
14.
R. A. Cuninghame-Green and P. Butkovič, The equation $a\otimes x=b\otimes y$ over (max,+), Theoret. Comput. Sci., 293 (2003), pp. 3--12.
15.
G. Cohen, S. Gaubert, and J. P. Quadrat, Duality and separation theorem in idempotent semimodules, Linear Algebra Appl., 379 (2004), pp. 395--422.
16.
J. Chaloupka, Parallel algorithms for mean-payoff games: An experimental evaluation, In Algorithms---ESA 2009, Lecture Notes in Comput. Sci. 5757, Springer, Berlin, 2009, pp. 599--610.
17.
V. Dhingra and S. Gaubert, How to solve large scale deterministic games with mean payoff by policy iteration, \newblock in Proceedings of the 1st international conference on Performance evaluation methodolgies and tools (VALUETOOLS), Vol. 180, Pisa, Italy, 2006, article 12.
18.
A. Dress, Duality theory for finite and infinite matroids with coefficients, Adv. Math., 59 (1986), pp. 97--123.
19.
M. Develin and B. Sturmfels, Tropical convexity, Doc. Math., (2004).
20.
M. Develin, F. Santos, and B. Sturmfels, On the rank of a tropical matrix, \newblock in Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ. 52, Cambridge University Press, Cambridge, UK, 2005, pp. 213--242.
21.
M. Develin and J. Yu, Tropical polytopes and cellular resolutions, Experiment. Math., 16 (2007), pp. 277--291.
22.
J. Erickson, New lower bounds for convex hull problems in odd dimensions, in Proceedings of the 12th Annual ACM Symposium on Computational Geometry, 1996.
23.
J. A. Filar, E. Altman, and K. E. Avrachenkov, An asymptotic simplex method for singularly perturbed linear programs, Oper. Res. Lett., 30 (2002), pp. 295--307.
24.
K. Fukuda and T. Terlaky, Criss-cross methods: A fresh view on pivot algorithms, Math. Program., 79 (1997), pp. 369--395.
25.
S. Gaubert and J. Gunawardena, The duality theorem for min-max functions, C.R. Acad. Sci., 326 (1998), pp. 43--48.
26.
S. Gaubert and R. D. Katz, Minimal half-spaces and external representation of tropical polyhedra, J. Algebraic Combin., 33 (2011), pp. 325--348.
27.
V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan, Cyclic games and an algorithm to find minimax cycle means in directed graphs, USSR Computat. Math. Math. Phys., 28 (1988), pp. 85--91.
28.
S. Gaubert, R. D. Katz, and S. Sergeev, Tropical linear-fractional programming and parametric mean payoff games, J. Symbolic Comput., 47 (2012), pp. 1447--1478, December.
29.
M. Gondran and M. Minoux, Linear algebra in dioids: A survey of recent results, Ann. Discrete Math., 19 (1984), pp. 147--164.
30.
S. Gaubert and S. Sergeev, Cyclic projectors and separation theorems in idempotent convex geometry, J. Math. Sci. 155 (2008), pp. 815--829.
31.
R. G. Jeroslow, Asymptotic linear programming, Oper. Res., 21 (1973), pp. 1128--1141.
32.
M. Joswig, Tropical halfspaces, in Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ. 52, Cambridge University Press, Cambridge, UK, 2005, pp. 409--431.
33.
V. Klee and G. J. Minty, How good is the simplex algorithm? in Inequalities III, Academic Press, New York, 1972, pp. 159--175.
34.
G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, Idempotent functional analysis: An algebraic approach, Math. Notes, 69 (2001), pp. 696--729.
35.
T. Markwig, A field of generalised Puiseux series for tropical geometry, Rend. Semin. Mat. Univ. Politec. Torino, 68 (2010), pp. 79--92.
36.
N. Megiddo, On the complexity of linear programming, in Advances in Economic Theory: Fifth World Congress, T. Bewley, ed., Cambridge University Press, Cambridge, UK, 1987, pp. 225--268.
37.
N. Megiddo, On the complexity of linear programming, in Advances in Economic Theory (Cambridge, MA, 1985), Econom. Soc. Monogr. 12, Cambridge University Press, Cambridge, UK, 1989, pp. 225--268.
38.
M. Plus, Linear systems in (max,+) algebra, in Proceedings of the 29th IEEE Conference on Decision and Control, IEEE, 1990, pp. 151--156.
39.
J. Richter-Gebert, B. Sturmfels, and T. Theobald, First steps in tropical geometry, in Idempotent Mathematics and Mathematical Physics, Contemp. Math. 377, AMS, Providence, RI, 2005, pp. 289--317.
40.
A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Vol. A, Algorithms Combin. 24, Springer-Verlag, Berlin, 2003.
41.
S. Schewe, From parity and payoff games to linear programming, in Mathematical Foundations of Computer Science 2009, Lecture Notes in Comput. Sci. 5734, Springer, Berlin, 2009, pp. 675--686.
42.
A. Seidenberg, A new decision method for elementary algebra, Ann. Math., (1954), pp. 365--374.
43.
D. Speyer and B. Sturmfels, The tropical Grassmannian, Adv. Geom., 4 (2004), pp. 389--411.
44.
B. Sturmfels and A. Zelevinsky, Maximal minors and their leading terms, Adv. Math., 98 (1993), pp. 65--112.
45.
A. Tarski, A Decision Method for Elementary Algebra and Geometry, Research report R-109, RAND Corporation, Santa Monica, CA, 1951.
46.
O. Viro, Dequantization of real algebraic geometry on logarithmic paper, in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math. 201, Birkhäuser, Basel, 2001, pp. 135--146.
47.
K. Zimmermann, Extremální Algebra, Ekonomický ùstav C̆SAV, Praha, 1976.
48.
K. Zimmermann, A general separation theorem in extremal algebras, Ekonom.-Mat. Obzor, 13 (1977), pp. 179--201.
49.
U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures, North-Holland, Amsterdam, 1981.
50.
U. Zwick and M. Paterson, The complexity of mean payoff games on graphs, Theoret. Comput. Sci., 158 (1996), pp. 343--359.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 751 - 795
ISSN (online): 1095-7146

History

Submitted: 10 September 2013
Accepted: 3 November 2014
Published online: 16 April 2015

Keywords

  1. tropical geometry
  2. linear programming
  3. simplex method

MSC codes

  1. 14T05
  2. 90C05

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media