Methods and Algorithms for Scientific Computing

Error Analysis for Constrained First-Order System Least-Squares Finite-Element Methods

Abstract

In this paper, a general error analysis is provided for finite-element discretizations of partial differential equations in a saddle-point form with divergence constraint. In particular, this extends upon the work of [J. H. Adler and P. S. Vassilevski, Springer Proc. Math. Statist. 45, Springer, New York, 2013, pp. 1--19], giving a general error estimate for finite-element problems augmented with a divergence constraint and showing that these estimates are obtained for problems such as diffusion and Stokes' using the first-order system least-squares (FOSLS) finite-element method. The main result is that by enforcing the constraint on a ${\mathbf H}^1$-equivalent FOSLS formulation one maintains optimal convergence of the FOSLS functional (i.e., the energy norm of the error) while guaranteeing the conservation of the divergence constraint (i.e., mass conservation in some examples). The error estimates and results depend on using finite elements for the constraint space that are inf-sup stable when paired with the spaces used for the original unknowns. This includes using discontinuous spaces on coarse meshes and pairing with standard bilinear or biquadratic elements in order to confirm the results.

Keywords

  1. FOSLS
  2. constrained minimization
  3. mass conservation
  4. saddle-point problem

MSC codes

  1. 65F10
  2. 65N20
  3. 65N30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. H. Adler and P. S. Vassilevski, Improving conservation for first-order system least squares finite-element methods, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, O. P. Iliev, S. D. Margenov, P. D. Minev, P. S. Vassilevski, and L. T. Zikatanov, eds., Springer Proc. Math. Statist. 45, Springer, New York, 2013, pp. 1--19.
2.
G. A. Baker, W. N. Jureidini, and O. A. Karakashian, Piecewise solenoidal vector-fields and the Stokes problem, SIAM J. Numer. Anal., 27 (1990), pp. 1466--1485.
3.
T. Barth, On the role of involutions in the discontinous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in Compatible Spatial Discretizations, Springer, New York, 2006, pp. 69--88.
4.
M. Berndt, T. A. Manteuffel, and S. F. McCormick, Local error estimates and adaptive refinement for first-order system least squares (FOSLS), Electron. Trans. Numer. Anal., 6 (1997), pp. 35--43.
5.
P. B. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations: Part I, SIAM J. Numer. Anal., 35 (1998), pp. 990--1009.
6.
P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite-element methods for the Stokes equations, Math. Comput., 63 (1994), pp. 479--506.
7.
P. B. Bochev and M. D. Gunzburger, A locally conservative least-squares method for Darcy flows, Commun. Numer. Methods Engrg. Biomed. Appl., 24 (2008), pp. 97--110.
8.
P. B. Bochev, J. Lai, and L. Olson, A locally conservative, discontinuous least-squares finite element method for the Stokes equations, Internat. J. Numer. Methods Fluids, 68 (2011), pp. 782--804.
9.
P. B. Bochev, J. Lai, and L. Olson, A non-conforming least-squares finite element method for incompressible fluid flow problems, Internat. J. Numer. Methods Fluids, 72 (2012), pp. 375--402.
10.
P. B. Bochev, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux least-squares principles for the Navier-Stokes equations: Part II, SIAM J. Numer. Anal., 36 (1999), pp. 1125--1144.
11.
J. U. Brackbill and D. C. Barnes, The effect of nonzero $\nabla \cdot \bf B$ on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35 (1980), pp. 426--430.
12.
J. H. Bramble, T. V. Kolev, and J. E. Pasciak, A least-squares approximation method for the time-harmonic Maxwell equations, J. Numer. Math., 13 (2005), pp. 237--263.
13.
S. C. Brenner and L. R. Scott, Mathematical Theory of Finite Element Methods, 2nd ed., Springer, New York, 2002.
14.
M. Brezina, J. Garcia, T. Manteuffel, S. McCormick, J. Ruge, and L. Tang, Parallel adaptive mesh refinement for first-order system least squares, Numer. Linear Algebra Appl., 19 (2012), pp. 343--366.
15.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Elements Methods, Springer Ser. Comput. Math., Springer, New York, 1991.
16.
Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., (1994), pp. 1785--1799.
17.
Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997), pp. 425--454.
18.
Z. Cai and G. Starke, Least-squares methods for linear elasticity, SIAM J. Numer. Anal., 42 (2004), pp. 826--842.
19.
G. F. Carey, A. I. Pehlivanov, and P. S. Vassilevski, Least-squares mixed finite element methods for non-selfadjoint elliptic problems II: Performance of block--ILU factorization methods, SIAM J. Sci. Comput., 16 (1995), pp. 1126--1136.
20.
C. L. Chang and J. J. Nelson, Least-squares finite element method for the Stokes problem with zero residual of mass conservation, SIAM J. Numer. Anal., 34 (1997), pp. 480--489.
21.
B. Cockburn, G. Kanschat, and D. Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., 74 (2005), pp. 1067--1095.
22.
B. Cockburn, G. Kanschat, and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput., 31 (2007), pp. 61--73.
23.
H. De Sterck, T. Manteuffel, S. McCormick, J. Nolting, J. Ruge, and L. Tang, Efficiency-based h- and hp-refinement strategies for finite element methods, in Numerical Linear Algebra with Applications, University of Waterloo, Waterloo, ON, 2008, pp. 89--114.
24.
V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer, New York, 1979.
25.
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Ser. Comput. Math., Springer, New York, 1986.
26.
J. J. Heys, E. Lee, T. A. Manteuffel, and S. F. McCormick, On mass-conserving least-squares methods, SIAM J. Sci. Comput., 28 (2006), pp. 1675--1693.
27.
J. J. Heys, E. Lee, T. A. Manteuffel, and S. F. McCormick, An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation, J. Comput. Phys., 226 (2007), pp. 994--1006.
28.
High Performance Preconditioners, http://www.llnl.gov/CASC/hypre/.
29.
T. V. Kolev and P. S. Vassilevski, Regular decompositions for $h(\mbox{div})$ spaces., Comput. Methods Appl. Math., 12 (2012), pp. 437--447.
30.
P. D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002.
31.
E. Lee and T. A. Manteuffel, FOSLL* method for the eddy current problem with three-dimensional edge singularities, SIAM J. Numer. Anal., 45 (2007), pp. 787--809.
32.
T. A. Manteuffel, S. F. McCormick, J. Ruge, and J. G. Schmidt, First-order system LL* (FOSLL*) for general scalar elliptic problems in the plane, SIAM J. Numer. Anal., 43 (2006), pp. 2098--2120.
33.
MFEM, http://mfem.googlecode.com.
34.
S. Münzenmaier and G. Starke, First-order system least squares for coupled Stokes-Darcy flow, SIAM J. Numer. Anal., 49 (2011), pp. 387--404.
35.
A. I. Pehlivanov and G. F. Carey, Error-estimates for least-squares mixed finite-elements, RAIRO Math. Model. Numer. Anal., 28 (1994), pp. 499--516.
36.
A. I. Pehlivanov, G. F. Carey, and P. S. Vassilevski, Least-squares mixed finite element methods for non-selfadjoint elliptic problems I: Error analysis, Numer. Math., 72 (1996), pp. 501--522.
37.
J. P. Pontaza and J. N. Reddy, Space-time coupled spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equations, J. Comput. Phys., 197 (2004), pp. 418--459.
38.
T. Rusten, P. S. Vassilevski, and R. Winther, Interior penalty preconditioners for mixed finite element approximations of elliptic problems, Math. Comp., 65 (1996), pp. 447--466.
39.
Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
40.
G. Starke, A first-order system least squares finite element method for the shallow water equations, SIAM J. Numer. Anal., 42 (2005), pp. 2387--2407.
41.
A. Toselli and O. B. Widlund, Domain Decomposition Methods---Algorithms and Theory, Springer, New York, 2005.
42.
S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, J. Comput. Phys., 65 (1986), pp. 138--158.
43.
P. S. Vassilevski, Multilevel block factorization preconditioners, in Matrix-Based Analysis and Algorithms for Solving Finite Element Equations, Springer, New York, 2008.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1071 - A1088
ISSN (online): 1095-7197

History

Submitted: 28 October 2013
Accepted: 11 March 2014
Published online: 3 June 2014

Keywords

  1. FOSLS
  2. constrained minimization
  3. mass conservation
  4. saddle-point problem

MSC codes

  1. 65F10
  2. 65N20
  3. 65N30

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media