Abstract

Let $Q$ be a relatively compact subset in a Hilbert space $V$. For a given $\epsilon>0$ let $N(\epsilon,Q)$ be the minimal number of linear measurements, sufficient to reconstruct any $x \in Q$ with the accuracy $\epsilon$. We call $N(\epsilon,Q)$ the sampling $\epsilon$-entropy of $Q$. Using dimensionality reduction, as provided by the Johnson--Lindenstrauss lemma, we show that, in an appropriate probabilistic setting, $N(\epsilon,Q)$ is bounded from above by Kolmogorov's $\epsilon$-entropy $H(\epsilon,Q)$, defined as $H(\epsilon,Q) = \log M(\epsilon,Q)$, with $M(\epsilon,Q)$ being the minimal number of $\epsilon$-balls covering $Q$. As the main application, we show that piecewise smooth (piecewise analytic) functions in one and several variables can be sampled with essentially the same accuracy rate as their regular counterparts. For univariate piecewise $C^k$-smooth functions this result, which settles the so-called Eckhoff conjecture, was recently established in D. Batenkov, Complete Algebraic Reconstruction of Piecewise-smooth Functions from Fourier Data, arXiv:1211.0680, 2012 via a deterministic “algebraic reconstruction” algorithm.

Keywords

  1. sampling
  2. metric entropy
  3. Johnson--Lindenstrauss lemma
  4. dimensionality reduction

MSC codes

  1. 41A46
  2. 46E20
  3. 94A20
  4. 94A12

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon, Appl. Comput. Harmon. Anal., 32 (2012), pp. 357--388.
2.
N. Ailon and B. Chazelle, Faster dimension reduction, Commun. ACM, 53 (2010), pp. 97--104.
3.
N. Alon, Problems and results in extremal combinatorics, Discrete Math., 273 (2003), pp. 31--53.
4.
D. Batenkov, Complete algebraic reconstruction of piecewise-smooth functions from Fourier data, Math. Comp., arXiv:1211.0680, 2012.
5.
D. Batenkov and Y. Yomdin, Algebraic Fourier reconstruction of piecewise smooth functions, Math. Comp., 81 (2012), pp. 277--318.
6.
P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Covergence rates for greedy algorithms in reduced basis method, SIAM J. Math. Anal., 43 (2011), pp. 1457--1472.
7.
T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulout, Sparse sampling of signal innovations, IEEE Signal Process. Mag., 25 (2008), pp. 31--40.
8.
R. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, Model-based compressive sensing, IEEE Trans. Inform. Theory, 56 (2010), pp. 1982--2001.
9.
R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constr. Approx., 28 (2008), pp. 253--263.
10.
E. J. Candes, An introduction to compressive sensing, IEEE Signal Process. Mag., 25 (2008), pp. 21--30.
11.
B. Carl, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal., 41 (1981), pp. 290--306.
12.
A. Cohen, W. Dahmen, and R. A. DeVore, Compressed sensing and best k-term approximation, J. Amer. Math. Soc., 22 (2009), pp. 211--231.
13.
R. A. DeVore, R. Howard, and C. Michelli, Optimal nonlinear approximation, Manuscripta Math., 63 (1989), pp. 469--478.
14.
R. A. DeVore, G. Kyriazis, D. Leviatan, and V. M. Tikhomirov, Wavelet compression and nonlinear n-widths, Adv. Comput. Math., 1 (1993), pp. 197--214.
15.
M. F. Duarte and Y. C. Eldar, Structured compressed sensing: From theory to applications IEEE Trans. Signal Process., 59 (2011), pp. 4053--4085.
16.
B. Ettinger, N. Sarig, and Y. Yomdin, Linear versus non-linear acquisition of step-functions, J. Geom. Anal., 18 (2008), pp. 369--399.
17.
K. S. Eckhoff, On a high order numerical method for functions with singularities, Math. Comput., 67 (1998), pp. 1063--1088.
18.
A. Gelb and E. Tadmor, Detection of edges in spectral data, Appl. Comput. Harmon. Anal., 7 (1999), pp. 101--135.
19.
T. Hrycak and K. Grochenig, Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method, J. Comput. Phys., 229 (2010), pp. 933--946.
20.
W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Contemp. Math, 26 (1984), pp. 189--206.
21.
W. B. Johnson and A. Naor, The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite, Discrete Comput. Geom., 43 (2010), pp. 542--553.
22.
B. S. Kashin and V. N. Temlyakov, A remark on compressed sensing, Math. Notes, 82 (2007), pp. 748--755.
23.
A. N. Kolmogorov, Estimates of the minimal number of elements of $\varepsilon $-nets in various functional spaces and their application to the problem of the representation of functions of several variables with superpositions of functions of lesser number of variables, Uspekhi Mat. Nauk, 10 (1955), pp. 192--193.
24.
A. N. Kolmogorov, Asymptotic characteristics of certain totally bounded metric spaces, Dokla. Akad. Nauk SSSR, 108 (1956), pp. 585--589.
25.
A. N. Kolmogorov and V. M. Tihomirov, e-entropy and e-capacity of sets in functional space, Amer. Math. Soc. Transl., 17 (1961) pp. 277--364.
26.
G. Kvernadze, Approximation of the discontinuities of a function by its classical orthogonal polynomial Fourier coefficients, Math. Comp, 79 (2010), pp. 2265--2285.
27.
Y. Lipman and D. Levin, Approximating piecewise-smooth functions, IMA J. Numer. Anal., 30 (2010), pp. 1159--1183.
28.
T. Peter and G. Plonka, A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Proble., 29 (2013), 025001.
29.
V. N. Temlyakov, Nonlinear Kolmogorov widths, Math. Notes, 63 (1998), pp. 785--795.
30.
R. Vershynin, Sampling and high-dimensional convex geometry, in Proceedings of SampTA 2013, Bremen, Germany, 2013.
31.
A. G. Vitushkin, On representation of functions by means of superpositions and related topics, Enseign. Math. (2), 23 (1977), pp. 255--320.
32.
Y. Yomdin, Semialgebraic complexity of functions, J. Complexity, 21 (2005), pp. 111--148.
33.
V. Zakharyuta, On asymptotics of entropy of a class of analytic functions, Funct. Approx. Comment. Math., 44 (2011), pp. 307--315.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 786 - 796
ISSN (online): 1095-7154

History

Submitted: 7 November 2013
Accepted: 9 December 2014
Published online: 10 February 2015

Keywords

  1. sampling
  2. metric entropy
  3. Johnson--Lindenstrauss lemma
  4. dimensionality reduction

MSC codes

  1. 41A46
  2. 46E20
  3. 94A20
  4. 94A12

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media