# Sampling, Metric Entropy, and Dimensionality Reduction

## Abstract

*Complete Algebraic Reconstruction of Piecewise-smooth Functions from Fourier Data*, arXiv:1211.0680, 2012 via a deterministic “algebraic reconstruction” algorithm.

### Keywords

### MSC codes

## Get full access to this article

View all available purchase options and get full access to this article.

## References

*Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon*, Appl. Comput. Harmon. Anal., 32 (2012), pp. 357--388.

*Faster dimension reduction*, Commun. ACM, 53 (2010), pp. 97--104.

*Problems and results in extremal combinatorics*, Discrete Math., 273 (2003), pp. 31--53.

*Complete algebraic reconstruction of piecewise-smooth functions from Fourier data*, Math. Comp., arXiv:1211.0680, 2012.

*Algebraic Fourier reconstruction of piecewise smooth functions*, Math. Comp., 81 (2012), pp. 277--318.

*Covergence rates for greedy algorithms in reduced basis method*, SIAM J. Math. Anal., 43 (2011), pp. 1457--1472.

*Sparse sampling of signal innovations*, IEEE Signal Process. Mag., 25 (2008), pp. 31--40.

*Model-based compressive sensing*, IEEE Trans. Inform. Theory, 56 (2010), pp. 1982--2001.

*A simple proof of the restricted isometry property for random matrices*, Constr. Approx., 28 (2008), pp. 253--263.

*An introduction to compressive sensing*, IEEE Signal Process. Mag., 25 (2008), pp. 21--30.

*Entropy numbers, s-numbers, and eigenvalue problems*, J. Funct. Anal., 41 (1981), pp. 290--306.

*Compressed sensing and best k-term approximation*, J. Amer. Math. Soc., 22 (2009), pp. 211--231.

*Optimal nonlinear approximation*, Manuscripta Math., 63 (1989), pp. 469--478.

*Wavelet compression and nonlinear n-widths*, Adv. Comput. Math., 1 (1993), pp. 197--214.

*Structured compressed sensing: From theory to applications*IEEE Trans. Signal Process., 59 (2011), pp. 4053--4085.

*Linear versus non-linear acquisition of step-functions*, J. Geom. Anal., 18 (2008), pp. 369--399.

*On a high order numerical method for functions with singularities*, Math. Comput., 67 (1998), pp. 1063--1088.

*Detection of edges in spectral data*, Appl. Comput. Harmon. Anal., 7 (1999), pp. 101--135.

*Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method*, J. Comput. Phys., 229 (2010), pp. 933--946.

*Extensions of Lipschitz mappings into a Hilbert space*, Contemp. Math, 26 (1984), pp. 189--206.

*The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite*, Discrete Comput. Geom., 43 (2010), pp. 542--553.

*A remark on compressed sensing*, Math. Notes, 82 (2007), pp. 748--755.

*Estimates of the minimal number of elements of $\varepsilon $-nets in various functional spaces and their application to the problem of the representation of functions of several variables with superpositions of functions of lesser number of variables*, Uspekhi Mat. Nauk, 10 (1955), pp. 192--193.

*Asymptotic characteristics of certain totally bounded metric spaces*, Dokla. Akad. Nauk SSSR, 108 (1956), pp. 585--589.

*e-entropy and e-capacity of sets in functional space*, Amer. Math. Soc. Transl., 17 (1961) pp. 277--364.

*Approximation of the discontinuities of a function by its classical orthogonal polynomial Fourier coefficients*, Math. Comp, 79 (2010), pp. 2265--2285.

*Approximating piecewise-smooth functions*, IMA J. Numer. Anal., 30 (2010), pp. 1159--1183.

*A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators*, Inverse Proble., 29 (2013), 025001.

*Nonlinear Kolmogorov widths*, Math. Notes, 63 (1998), pp. 785--795.

*Sampling and high-dimensional convex geometry*, in Proceedings of SampTA 2013, Bremen, Germany, 2013.

*On representation of functions by means of superpositions and related topics*, Enseign. Math. (2), 23 (1977), pp. 255--320.

*Semialgebraic complexity of functions*, J. Complexity, 21 (2005), pp. 111--148.

*On asymptotics of entropy of a class of analytic functions*, Funct. Approx. Comment. Math., 44 (2011), pp. 307--315.

## Information & Authors

### Information

#### Published In

#### Copyright

#### History

**Submitted**: 7 November 2013

**Accepted**: 9 December 2014

**Published online**: 10 February 2015

#### Keywords

#### MSC codes

### Authors

## Metrics & Citations

### Metrics

### Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

#### Cited By

- Density Theorems for Nonuniform Sampling of Bandlimited Functions Using Derivatives or Bunched MeasurementsJournal of Fourier Analysis and Applications, Vol. 23, No. 6 | 21 September 2016