Abstract

Prediction of extreme events is a highly important and challenging problem in science, engineering, finance, and many other areas. The observed extreme events in these areas are often associated with complex nonlinear dynamics with intermittent instability. However, due to lack of resolution or incomplete knowledge of the dynamics of nature, these instabilities are typically hidden. To describe nature with hidden instability, a stochastic parameterized model is used as the low-order reduced model. Bayesian inference incorporating data augmentation, regarding the missing path of the hidden processes as the augmented variables, is adopted in a Markov chain Monte Carlo (MCMC) algorithm to estimate the parameters in this reduced model from the partially observed signal. Howerver, direct application of this algorithm leads to an extremely low acceptance rate of the missing path. To overcome this shortcoming, an efficient MCMC algorithm which includes a pre-estimation of hidden processes is developed. This algorithm greatly increases the acceptance rate and provides the low-order reduced model with a high skill in capturing the extreme events due to intermittency.

Keywords

  1. hidden process
  2. intermittency
  3. stochastic parameterized model
  4. data augmentation
  5. MCMC algorithm
  6. prediction skill

MSC codes

  1. 60G25
  2. 60H30
  3. 62F15
  4. 62P12
  5. 94A15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Beskos and G. Roberts Exact simulation of diffusions, Ann. Appl. Probab., 15 (2005), pp. 2422--2444.
2.
M. Bladt and M. Sorensen, Simple Simulation of Diffusion Ridges with Application to Likelihood Inference for Diffusions, Working paper, Centre for Analytical Finance, University of Copenhagen, Copenhagen, 2007.
3.
M. Branicki, B. Gershgorin, and A. J. Majda, Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters, J. Comput. Phys., 231 (2012), pp. 1462--1498.
4.
M. Branicki, N. Chen, and A. J. Majda, Non-Gaussian test models for prediction and state estimation with model errors, Chinese Ann. Math. Ser. B, 34 (2013), pp. 29--64.
5.
M. Branicki and A. J. Majda, Quantifying uncertainty for predictions with model error in non-Guassian systems with intermittency, Nonlinearity, 25 (2012), pp. 2543--2578.
6.
M. Branicki and A. J. Majda, Dynamic stochastic superresolution of sparseley observed turbulent systems, J. Comput. Phys., 241 (2013), pp. 333--363.
7.
K. Cochrane, C. De Young, D. Soto, and T. Bahri, Climate Change Implications for Fisheries and Aquaculture, FAO Fisheries and Aquaculture technical report 530, Food and Agriculture Organization of the United Nations, Rome, 2009.
8.
S. Cotter, G. Roberts, A. Stuart, and D. White, MCMC methods for functions: Modifying old algorithms to make them faster, Statist. Sci., 28 (2013), pp. 424--446.
9.
S. Chib, M. K. Pitt, and N. Shephard, Likelihood based inference for diffusion driven models, Working paper, Nuffield College, University of Oxford, Oxford, 2004.
10.
S. Chib, M. K. Pitt, and N. Shephard, Likelihood based inference for diffusion driven models, Working paper, Nuffield College, University of Oxford, Oxford, 2010.
11.
O. Elerian, S. Chib, and N. Shephard, Likelihood inference for discretely observed non-linear diffusions, Econometrica, 69 (2001), pp. 959--993.
12.
B. Eraker, Markov chain Monte Carlo analysis of diffusion models with application to finance, J. Bus. Econom. Statist., 19 (2001), pp. 177--191.
13.
C. Fuchs, Inference for Diffusion Processes with Applications in Life Sciences, Springer, Heidelberg, 2013.
14.
B. Gershgorin, J. Harlim, and A. J. Majda, Test models for improving filtering with model errors through stochastic parameter estimation, J. Comput. Phys., 229 (2010), pp. 1--31.
15.
B. Gershgorin, J. Harlim, and A. J. Majda, Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation, J. Comput. Phys., 229 (2010), pp. 32--57.
16.
B. Gershgorin and A. J. Majda, Filtering a statistically exactly solvable test model for turbulent tracers from partial observations, J. Comput. Phys., 230 (2011), pp. 1602--1638.
17.
D. Giannakis, A. J. Majda, and I. Horenko, Information theory, model error, and predictive skill of stochastic models for complex nonlinear systems, Phys. D, 241 (2012), pp. 1735--1752.
18.
A. Golightly and D. J. Wilkinson, Bayesian inference for stochastic kinetic models using a diffusion approximation, Biometrics, 61 (2005), pp. 781--788.
19.
A. Golightly and D. J. Wilkinson, Bayesian sequential inference for nonlinear multivariate diffusions, Stat. Comput., 16 (2006), pp. 323--338.
20.
A. Golightly and D. J. Wilkinson, Bayesian sequential inference for stochastic kinetic biochemical network models, J. Comput. Biol., 13 (2006), pp. 838--851.
21.
A. Golightly and D. J. Wilkinson, Bayesian inference for nonlinear multivariate diffusion models observed with error, Comput. Statist. Data Anal., 52 (2008), pp. 1674--1693.
22.
A. Golightly and D. J. Wilkinson, Bayesian parameter inference for stochastic biochemical network models using particle MCMC, Interface Focus, 1 (2011), pp. 807--820.
23.
J. Harlim and A. J. Majda, Filtering turbulent sparsely observed geophysical flows, Monthly Weather Rev., 138 (2010), pp. 1050--1083.
24.
S. E. Hills and A. F. M. Smith, Parameterization Issues in Bayesian Inference, in Bayesian Statistics 4, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Oxford University Press, Oxford, 1992.
25.
K. Kalogeropoulos, Likelihood-based inference for a class of multivariate diffusions with unobserved paths, J. Statistical Planning and Inference, 137 (2007), pp. 3092--3102.
26.
A. J. Majda and M. Branicki, Lessons in uncertainty quantification for turbulent dynamical system, Discrete Contin. Dyn. Syst., 32 (2013), pp. 3133--3221.
27.
A. J. Majda, C. Franzke, and D. Crommelin, Normal forms for reduced stochastic climate models, Proc. Natl. Acad. Sci., 16 (2009), pp. 3649--3653.
28.
A. J. Majda and J. Harlim, Filtering Complex Turbulent Systems, Cambridge University Press, Cambridge, 2012.
29.
A. J. Majda and B. Gershgorin, Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error, Proc. Natl. Acad. Sci., 108 (2011), pp. 12599--12604.
30.
A. J. Majda, J. Harlim, and B. Gershgorin, Mathematical strategies for filtering turbulent dynamical systems, Discrete Contin. Dyn. Syst., 27 (2010), pp. 441--486.
31.
G. A. Meehl and C. Tebaldi, More intense, more frequent, and longer lasting heat waves in the $21$st century, Science, 305 (2004), pp. 994--997.
32.
O. Papaspiliopoulos, G. O. Roberts, and O. Stramer, Data augmentation for diffusions, J. Comput. Graph. Statist., 22 (2013), pp. 665--688.
33.
B. Ø ksendal, Stochastic Differential Equations: An Introduction with Applications, 6th ed., Springer, Heidelberg, 2003.
34.
G. Roberts and O. Stramer, On inference for partial observations from partial observed nonlinear diffusion model using Metropolis--Hastings algorithms, Biometrika 88 (2001), pp. 603--621.
35.
G. Sermaidis, O. Papaspiliopoulos, G. O. Roberts, A. Beskos, and P. Fearnhead, Markov chain Monte Carlo for exact inference for diffusions, Scand. J. Statist., 40 (2013), pp. 294--321.
36.
H. Sorensen, Parametric inference for diffusion processes observed at discrete points in time: A survey, Int. Statist. Rev., 72 (2004), pp. 337--354.
37.
O. Stramer and M. Bognar, Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach, Bayesian Anal., 6 (2011), pp. 231--258.
38.
N. N. Taleb, The Fourth Quadrant: A Map of the Limits of Statistics, Edge, 2008.
39.
M. A. Tanner and W. H. Wong, The calculation of posterior distributions by data augmentation, J. Amer. Statist. Assoc., 82 (1987), pp. 528--540.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 647 - 669
ISSN (online): 2166-2525

History

Submitted: 12 November 2013
Accepted: 2 September 2014
Published online: 11 November 2014

Keywords

  1. hidden process
  2. intermittency
  3. stochastic parameterized model
  4. data augmentation
  5. MCMC algorithm
  6. prediction skill

MSC codes

  1. 60G25
  2. 60H30
  3. 62F15
  4. 62P12
  5. 94A15

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media